Acid Catalysed Rearrangement of Fused Alkylideneoxetanols

Paul J Hickford, James R. Baker, Ian Bruce and Kevin I. Booker-Milburn

Organic Letters 2007, 9 (23), 4681

Abstract

- Synthesis of complex aza fused tricyclic lactones
 - Maleimide [5+2] cycloaddition/Norrish II cascade
 - Acid catalysed rearrangement of 3-oxetanol

Norrish Type II

- Photochemical intramolecular abstraction of a γ-hydrogen by the excited carbonyl compound to produce a 1,4-biradical as a primary photoproduct
 - Intramolecular recombination cyclobutanes
 - Fragmentation enol and alkene

Initial Work

- Extensively studied intermolecular [2+2] reaction of tetrahydrophthalic anhydride (X = O) and imides (X = NH, NMe) with alkenols
 - Extremely efficient
 - High yielding
 - Excellent stereoselectivity

Natural progression of methodology – intramolecular variant

Booker-Milburn et al Eur. J. Org. Chem. 2001, 1473

High-Stereoselectivity - Explained

- High Stereoselectivity in favour of exo-isomer
- Formation of 1,4 biradical adduct
 - Exsist as two conformers (17 a and 17 b)
 - Interconverable by free rotation
 - Electrostatic replusion of oxygen lone pairs in 17 b favours 17 a
- Exo isomer major product

Initial Work

Exclusive formation of tricyclic azepine

- First example of formal [5+2] cycloaddition reaction of non-arylimides
 - Could be used in rapid construction of perhydroazaazules

Mechanism

 Direct [2+2] onto excited amide resonance structure to give a zwitterionic intermediate

- Spontaneous fragmentation to yield the product
 - Alkene geometry supports this mechanism
 - stepwise process would allow bond rotations and give epimeric products

Application of Methodology to Total Synthesis - I

Model Studies towards homoerythrinan alkaloids eg robustine

- Unexpected result favours [2+2] addition
 - [5+2] TS less favourable
 - Require molecular modelling to help elucidate factors controlling the switch in mode of cycloaddition

8

Application of Methodology to Total Synthesis - II

- Synthesis of CDE skeleton of (-)-Cephalotaxine
- Derivatives in Phase III for treatment of chronic myelogenous leukaemia
- Formal [5+2] maleimide photocycloaddition sequence

Application of Methodology to Total Synthesis

- ABCD Tetracyclic Core of Neotuberostemonine
 - Human cough remedies and antihelminthics
 - [5+2] cycloaddition as key step to synthesise ABC ring system

$$\begin{array}{c}
O \\
O \\
O \\
H \\
H
\end{array}$$

$$\begin{array}{c}
H \\
H \\
H
\end{array}$$

$$\begin{array}{c}
O \\
H \\
H
\end{array}$$

$$\begin{array}{c}
H \\
H \\
H
\end{array}$$

$$\begin{array}{c}
O \\
H \\
H
\end{array}$$

$$\begin{array}{c}
H \\
H
\end{array}$$

$$\begin{array}{c}
O \\
H \\
H
\end{array}$$

$$\begin{array}{c}
H \\
H
\end{array}$$

$$\begin{array}{c}
O \\
H
\end{array}$$

$$\begin{array}{c}
O \\
H \\
H
\end{array}$$

$$\begin{array}{c}
O \\
H$$

$$\begin{array}{c}
O \\
H
\end{array}$$

$$\begin{array}{c}
O \\
H$$

$$\begin{array}{c}
O \\
H
\end{array}$$

$$\begin{array}{c}
O \\
H$$

$$\begin{array}{c}
O \\
H$$

$$\begin{array}{c}
O \\
H
\end{array}$$

$$\begin{array}{c}
O \\
H$$

$$\begin{array}{c}
O$$

$$\longrightarrow \bigvee_{O \subset N \subset O} \overset{O}{\longrightarrow} \bigvee_{H : CO_2 H} \longrightarrow \bigvee_{H : CO_2 H} \overset{O}{\longrightarrow} \bigvee_$$

Booker-Milburn et al ACIE, 2003, 42, 1642

Application of Methodology to Total Synthesis

Second Iteration – Substituted Maleimides

Methoxymaleimide [5+2]/Norrish II Cascade

Title Paper – Unexpected Rearrangements

- Investigating further reactivity of oxetane dervatives
 - Unusual behaviour observed
- Reduction/dechlorination can be carried out with Zn/AcOH
 - OAc ester initially proposed
 - coupling constants
 - oxetanol J = 6Hz
 - Product J = 12 Hz
 - Acid cat. Rearrangement
- Nucleophillic ring opening of oxetane ring
 - Followed by transannular amide cleavage
 - Rationalised by Relief of ring strain

Reaction Scope

- Continuous flow reactor
 - Gram quantities of oxetanes to be obtained
- Initial ring opening occurs mainly by SN2 (minor diastereomer from competing SN1 pathway)
- Inversion of stereochemistry of reacting centre (confirmed by Xray crystallography of 11)
- pTSA gave incorporation of OTs

Table 1. Rearrangement of Oxetanes^a

entry	R_1	R_2	10 yield [%]	acid (HA)	11 yield [%]	dr^b
1	Н	Н	76°	AcOH	59	1:0
2	Н	Н		PhCO ₂ H	54	1:0
3	Η	Н		PhCH ₂ CO ₂ H	69	1:0
4	Н	Н		m-NO ₂ C ₆ H ₄ CO ₂ H	52	1:0
5	Η	Н		TsOH	47	1:0
6	Η	Me	71°	AcOH	59	1:0
7	Η	Me		$PhCO_2H$	41	1:0
8	Me	Н	55d	AcOH	47	4:1
9	Me	Н		$PhCO_2H$	38	3.5:1
10	Me	Н		m-NO ₂ C ₆ H ₄ CO ₂ H	56	3.6:1
11	Me	Me	46^d	AcOH	34	2.1:1¢
12	${\rm Me}$	Me		$PhCO_2H$	0	_

^a Rearrangements typically on a 50-mg scale. ^b Determined by ¹H NMR analysis. ^c Isolated yields by column chromatography. ^d Recrystallized yields of a single diastereomer. ^c Only two diastereomers observed (at the R₁ stereogenic center).

Ring Opening of Oxetanes

- Alternative nucleophiles
 - Enabled isolation of initial oxetane ring opened product to aid mechanism and structure elucidation
- Cl anion from LiCl sufficiently nucleophilic for ring opening
- 2-substituted (R = CH₃) oxetanes do not undergo ring opening reactions (cf with acid cat. opening)
 - Nucleophilic attack at 2Y oxetane centre is severely restricted –SN2 mechanism under non-acidic conditions

Scheme 3. Ring-Opening of Oxetanes under Nonacidic Conditions

Summary

- Concerted [5+2]/Norrish II photocycloaddition sequence of simple alkoxy maleimide derivatives to provide oxetane/azepine fused system
 - Excellent yields and stereoselctivity
- Novel acid catalysed rearrangement of oxetane-fused azepines to complex lactone fused azatricycles