Direct C-Arylation of Free (NH)-Indoles and Pyrroles Catalyzed by Ar-Rh(III) Complexes Assembled In Situ

by Wang, X; Lane, B. S.; Sames, D.

Journal of the American Chemical Society 2005, ASAP (Communication)

> Erick B. Iezzi Current Literature April 2, 2005

- > Heteroaromatics are important structural units found in natural products, pharmaceuticals and numerous functional synthetics
- C-H bond activation represents a chemical process of broad synthetic scope:
 - ability to selectively and/or systematically functionalize a heteroaromatic molecule
 - selectively functionalize sp² and sp³ carbon atoms
- Direct C-arylation of free (NH)-azoles eliminates the need for introducing protecting groups and reactive functionalities prior to C–C formation (i.e., halogenation or stoichiometric metalation prior to C–C coupling)
- Free pyrroles, indoles and imidazoles are unreactive under known arylation conditions, yielding little or no C-arylated products

Common Methods for Synthesizing Substituted Indoles

Fisher indole synthesis

Sakamoto, et al. J. Chem. Soc., Perkin Trans. 1, 1999, 529-534

Classical Methods for Synthesizing Substituted Pyrroles

Paal-Knorr Synthesis

Hantzsch Synthesis

Electrophilic Aromatic Substitution of Indoles and Pyrroles

Mannich Reaction $\begin{array}{c}
\overbrace{H}\\
\overbrace{I}\\
\overbrace{I}$

Houben-Hoesh Reaction

Friedel-Crafts Acylation with Protected Pyrrole

Anderson, et al. Tetrahedron Lett. 1981, 22, 4899-4900

Erick lezzi @ Wipf Group

N-Arylation of Azoles

Buchwald, et al. J. Am. Chem. Soc. 2001, 123, 7727-7729.

Metalation as N-Protection and Activation of Heteroarenes

- this process suffers from considerable moisture sensitivity and limited functional group scope Sames, et al. J. Am. Chem. Soc. 2003, 125, 5274-5275

Erick lezzi @ Wipf Group

Mechanistic Explanations for C-2 and C-3 Arylation of N-Metalated Indole

Selectivity in C-Arylation of In Situ N-Metalated Azoles

Sames, et al. J. Am. Chem. Soc. 2003, 125, 5274-5275

Direct C-Arylation of Free (NH)-Azoles by a Rh(III) Catalyst: Evaluation of Substrates and Functional Groups

Sames, et al. J. Am. Chem. Soc. 2005, ASAP.

Synthesis and Reactivity of Rh(III) Catalyst

- CsOPiv and 4-Tol-I serve as trapping agents to prevent decomposition of Rh(I)

- Carbonates and phosphates of alkali metals as well as amines were ineffective as bases
- CsOAc gave 45% product, versus 82% for CsOPiv

- > Taylor catalyst to work with basic amine substrates (i.e., 7-azaindole)
- > Clearify mechanistic details of C-H metalation via the Rh(III) catalyst