

 Agrochemicals Veterinary products Dyes and pigments, fluorescent agents Antioxidants and food additives Corrosion inhibitors Intermediates in organic synthesis Biological functions (pKa, metal binding, hydrogen bonding, hydrophilicity, Fire retardant Photographic materials Organic conductors 	
cf.: - Pozharskii, A. F.; Soldatenkov, A. T.; Katritzky, A. R. <i>Heterocycles in li society</i> ; Wiley: Chichester, 1997.	fe and

Quantitative r	neasurement of aromat	icity from heats of comb	ustion and	
nyarogonado		combustion	hydrogenation	
		(kcal/mol)	(kcal/mol)	
	benzene	36-37	36	
	pyridine	23-43		
	thiophene	24-31	29	
	furan	16-23	22	
	pyrrole	14-31		
	pyrazine		8-24	
	pyridazine		12	
	pyrimidine		8	

Nomenclature The widely used Hantzsch-Widman nomenclature system specifies the ring size and the nature, type, and position of the heteroatom(s).	

s for heteroaton	ns in decreasing order of	priority:	
Heteroatom	Symbol (Valence)	Prefix	
Oxygen	O (II)	Оха	
Sulfur	S (II)	Thia	I
Selenium	Se (II)	Selena	
Tellurium	Te (II)	Tellura	
Nitrogen	N (III)	Aza	
Phosphorus	P (III)	Phospha	
Arsenic	As (III)	Arsa	
Antimony	Sb (III)	Stiba	
Bismuth	Bi (III)	Bisma	
Silicon	Si (IV)	Sila	
Germanium	Ge (IV)	Germa	

Tin	Sn (IV)	Stanna	000
Lead	Pb (IV)	Plumba	
Boron	B (III)	Bora	
Mercury	Hg (II)	Mercura	

Stems used to indic unsaturation in hete	ate the size of the ring a romonocyclic systems:	and the level of	000
Ring size	Unsaturation	Saturation	00000
3	-irene	-Irane	
4	-ete	-etane	·
5	-ole	-olane	
6, for O, S, Se, Te, Bi, Hg preceding the stem	-ine	-ane	
6, for N, Si, Ge, Sn, Pb preceding the stem	-ine	-inane	
6, for B, P, As, Sb preceding the stem	-inine	-inane	
7	-epine	-epane	
8	-ocine	-ocane	
9	-onine	-onane	
10	-ecine	-ecane	

 Metalations of azaindoles L'Heureux, A.; Thibault, C.; Ruel, R. "Synthesis of functionalized 7-azaindoles via directed ortho-metalations." Tetrahedron Letters 2004, 45, 2317-2319. 	000 00000 00000 00000 0000 0000 0000

• An example of the Batcho-Leimgruber procedure: Sanderson, P. E. J.; Stanton, M. G.; Dorsey, B. D.; Lyle, T. A.; McDonough, C.; Sanders, W. M.; Savage, K. L.; Naylor-Olsen, A. M.; Krueger, J. A.; Lewis, S. D.; Lucas, B. J.; Lynch, J. J.; Yan, Y. "Azaindoles: Moderately basic P1 groups for enhancing the selectivity of thrombin inhibitors." Bioorganic & Medicinal Chemistry Letters 2003, 13, 795-798. Siu, J.; Baxendale, I. R.; Ley, S. V. "Microwave-assisted Leimgruber-0 ŏŏŏo Batcho reaction for the preparation of indoles, azaindoles, and õõõ pyrroloquinolines." Organic & Biomolecular Chemistry 2004, 2, 160-0000 167.

Carbolithiation route to azaindoles	000
Cottineau, B.; O'Shea, D. F. "Carbolithiation of vinyl pyridines as a route to 7-azaindoles." Tetrahedron Letters 2005, 46, 1935-1938.	