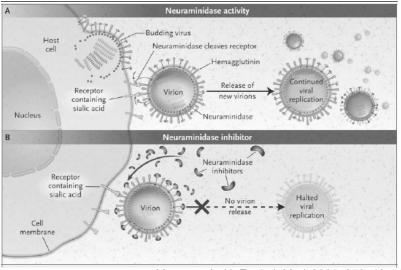
Second Generation Catalytic Asymmetric Synthesis of Tamiflu: Allylic Substitution Route

Tsuyoshi Mita, Nobuhisa Fukuda, Francesc X. Roca, Motomu Kanai,* and Masakatsu Shibasaki*

Org. Lett. 2007, ASAP

Presented by: Edmund Yeh Jan. 8th 2007

Outline


- Background information
- Previous synthesis and their limitations
- Improved synthesis form Shibasaki
- Conclusion

Current Treatments for Influenza

- There are two classes of drugs currently used as treatment for influenza (flu).
 - · Adamantanes: amantadine and rimantadine
 - · Neuraminidase Inhibitors: zanamivir and oseltamivir
- Avian influenza is resistant to adamantane drugs
- Oseltamivir phosphate (TamifluTM) was found to be the only effective treatment for avian influenza virus (H5N1)

Moscona A. N. Engl. J. Med. 2005, 353, 13, 1363

Neuraminidase Inhibitor

Moscona A. N. Engl. J. Med. 2005, 353, 13, 1363

Previous Synthesis of Tamiflu™

• Karpf et al. synthesis used (-)-quinic acid or (-)shikimic acid as starting material.

Rohloff, J. et al. J. Org. Chem. **1998**, 63, 4545 Karpf, M.; Trussardi, R. J. Org. Chem. **2001**, 66, 2044

Previous Synthesis of Tamiflu™

 Corey et al. used Diels-Alder reaction to construct the cyclohexene core.

Overall yield: ~15%

Yeung, Y.-Y.; Hong, S.; Corey, E. J. J. am. Chem. Soc. 2006, 128, 6310

Previous Synthesis of Tamiflu™

• Shibasaki et al. showcased his catalytic asymmetric ring opening of meso-aziridine.

Shibasaki, M. et al. J. am. Chem. Soc. 2006, 128, 6312

M. Shibasaki TamifluTM Synthesis (part deux)

NHBoc

1. TMSN₃, cat.

1. PPh₃; H₂O

2. Ac₂O, py

Shibasaki, M. et al. Org. Lett. 2007, ASAP

NHBoc

CbzCl

NaHCO₃

M. Shibasaki TamifluTM Synthesis (part deux)

Shibasaki, M. et al. Org. Lett. 2007, ASAP

Conclusion

- Shibasaki presented an alternative way of TamifluTM synthesis.
- SeO₂ allylic oxidation step from first paper was replaced by non-toxic transformations.
- Overall yield improved dramatically but still not as high as current method.
- New ways of obtaining (-)-shikimic acid has been found and will be mass produced soon.