Novel Photolabile Protecting Group for Carbonyl Compounds

Wang, P.; Hu, H.; Wang, Y.; Org. Lett., ASAP

Presented by: Adam Rosenberg

Overview

- Background & History
- Synthesis
- Protection Cycle
- Substrate Selectivity
- Evidence for Proposed Mechanism
- Stability
- Conclusion

- The value of protecting groups in synthesis is difficult to overstate
- One of the major difficulties lies in their susceptibilities to reaction conditions and in differentiating similar moieties that are protected
- One solution to this is to design a protecting group that makes use of uncommon reaction conditions

History of Photolabile Protecting Groups

- Research into this type of protecting group goes back many decades
- Groups that can be simply and efficiently protected include: alcohols, amines, amides, carboxylic acids and phosphates
- Despite the large volume of photolabile groups available, it has been challenging to design one for the aldehydes and ketones
- Several attempts have been made, with varying degrees of success
- Most of these protecting groups are susceptible to reactive organometallic reagents and reducing reagents, and are also non-trivial to synthesize

- Synthesized in one step from 5methoxysalicylic acid
- Easily scaleable

Protection Cycle

Table 1. Protection and Photorelease of the Carbonyls

entry	carbonyl compounds	protection yield (%)	deprotection yield (%)	irradiation time (min)
1	1a	99^a	90^e	60
2	1b	91^a	$89 \; (Z/E = 1.4)^e$	40
3	1c	95^a	85^{f}	50
4	1d	$>99^{a}$	74^e	60
5	1e	99^a	89^e	60
6	1f	97^b	80^{g}	80
7	$1 \mathbf{g}$	93^c	84^e	80
8	1h	91^c	86^g	60

^{*a*} **2** (0.3 mmol), *p*TsOH (0.02 mmol), and carbonyl compound (0.2 mmol) in 1.0 mL of benzene, 23 °C, 24 h. ^{*b*} **2** (0.3 mmol), *p*TsOH (0.02 mmol), carbonyl compound (0.2 mmol), and CuSO₄ (0.8 mmol) in 1.0 mL of benzene, 23 °C, 24 h. ^{*c*} **2** (0.3 mmol), *p*TsOH (0.02 mmol), carbonyl compound (0.2 mmol), and P₂O₅ (0.8 mmol) in 1.0 mL of benzene, 23 °C, 24 h. ^{*d*} Irradiated with a 450 W medium-pressure mercury lamp equipped with a Pyrex filter sleeve. ^{*e*} Isolated as the oxime derivatives. ^{*f*} Isolated as the semicarbazone derivative. ^{*g*} Isolated as the ketone without derivatization.

- To test the proposed deprotection mechanism of the zwitterionic intermediate the groups in the trityl position were varied
- When one phenyl group was transposed to a proton, let to a deprotection yield of 33%
- When both phenyls were changed to methyl groups, the deprotection yield dropped to less than 6%
- Further testing revealed that the meta-methoxy group is vital to the deprotection, with no deprotection detected in the absence of the methoxy group

Stability to reaction conditions

entry	$reagent^a$	$\operatorname{solvent}$	conditions	3a (%)°
1	$PhLi^{b}$	THF	−78 to 23 °C, 6 h	100
2	$LiAlH_4$	C_6H_6	23 °C, 24 h	100
			reflux, 2 h	100
3	t-BuOK	MeCN	23 °C, 24 h	100
4	DDQ	MeCN	23 °C, 24 h	100
5	AcOH	MeCN	23 °C, 24 h	100
		C_6H_6	23 °C, 24 h	100
		C_6H_6	reflux, 2 h	94
6	TFA	MeCN	23 °C, 24 h	98
		C_6H_6	23 °C, 24 h	93
		C_6H_6	reflux, 2 h	89
7	pTsOH	MeCN	23 °C, 24 h	75
		C_6H_6	23 °C, 24 h	95
		C_6H_6	reflux, 2 h	92
8	HCl (37%)	MeCN	23 °C, 24 h	99
		C_6H_6	23 °C, 24 h	96
		C_6H_6	reflux, 2 h	93
9	$\mathrm{HCl}(1\ \mathrm{N})^d$	THF	40 °C, 24 h	100

Table 2. Stability of 3a under Various Conditions

^{*a*} **3a** (0.01 mmol) in 1.0 mL of MeCN or 0.5 mL of benzene treated with reagent (≥ 0.1 mmol). ^{*b*}**3a** (0.05 mmol) in 1.0 mL of dry THF treated with 0.4 mL of PhLi (2.0 M Bu₂O solution) at -78 °C. ^{*c*}Yields determined by ¹H NMR of the crude reaction mixture after workup. ^{*d*}**3a** (0.04 mmol) in 0.6 mL of THF with 0.2 mL of 1 N HCl.

Conclusion

- A novel protecting group using the unique photochemical strategy
- An extremely stable protecting group that contains minimal functionality to interfere with the substrate
- High efficiency of protection and deprotection