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A fascinating aspect of the Diels—Alder reaction is its endo
selectivity. This endo preference is much less pronounced in
intermolecular cases compared with the intramolecular and
transannular Diels-Alder (IMDA and TADA) reactions.
Nevertheless, high endo selectivity is observed in the Diels—
Alder additions of (E)-1-O-substituted dienes catalyzed by
Lewis acids that lead to cis-1,6-disubstituted cyclohexene
systems of type I (Scheme 1).! Compounds of type I could be
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Scheme 1. Strategy to reach highly functionalized cyclohexane deriva-
tives. EWG = electron-withdrawing group, FGI =functional-group inter-
conversion, X=SiR;, acyl, alkyl.

used as a temporary means to control the stereogenic centers
at C2 and C3. For example, the substituent at C1 in I and II
should direct additions to the opposite face of the ring to give
IIT selectively. Subsequently, the substitution at C1 may be
transformed to give the desired substitution pattern I'V.

We chose ovalicin (1), a sesquiterpene alkaloid first
isolated from cultures of the fungus Pseudorotium ovalis
STOLK as a target for this strategy.”) Compound 1 and the
structurally closely related fumagillin (2) (Scheme 2) have
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Scheme 2. Natural products with antiangiogenic activity.

sparked scientific interest because of their potent antiangio-
genic activity.*! In addition, 1 is a promising agent against
microsporidiosis.”

Although a Diels—Alder reaction was employed in two of
the reported total syntheses of fumagillin (2),/! it has not been
used in the reported syntheses of ovalicin (1).”) From our
retrosynthetic plan, 3 and 4 emerged as key intermediates that
could originate from the Diels—Alder reaction between 5 and
6 (Scheme 3).
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Scheme 3. Retrosynthetic analysis of ovalicin (1). PG = protecting
group.

Several attempts to develop a catalytic enantioselective
Diels—Alder reaction of 5 and various derivatives of 6, such as
1,3-butadienyl benzoate (7), tert-butyldimethylsiloxy-1,3-
butadiene (8), or para-methoxybenzyl-oxy-1,3-butadiene
(9), failed to produce results with reasonable enantioselectiv-
ities (Table 1). The best results were obtained from reactions
of the titanjum-based Keck (A) and Mikami (B) catalysts®?
(Scheme 4) with diene 7 (Table 1, entries 1 and 3; 56 and
45% ee, respectively). No selectivity was observed using
diene 8 even at —78°C (entry2). Diene 9 proved to be
unstable towards the Keck and Mikami catalysts, even at
—78°C. Use of the Corey (S)-tryptophan-derived oxazabor-
olidine! (C) failed to give selectivities with diene 8 and 9
(entries 4 and 5). Diene 7 did not react in the presence of C,
and was recovered from the reaction. Also the imidazolidi-
none catalyst (D) reported by MacMillan et al."" showed only
negligible selectivity with 7 (entry 6). Thus the electron-rich
dienes 8 and 9 are too reactive to need catalysis. The electron-
poor (“slow”) diene 7 does react under catalysis, although
without much induction of asymmetry.
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Table 1: Selection of the attempted enantioselective Diels—Alder cyclo-
additions of 5 with various dienes.

Entry Catalyst® Diene® Tt Yield [%]  ee [%]
OBz

1 A \J/ 7 4°C,18 h 42 56
OTBS

2 A J 8 —78°C,1.5h 73 <10
OBz

3 B \J/ 7 4°C,18 h 41 45
OTBS

4 J g  —78°C,6h 44 <10
OPMB 00 sp,

3 ¢ J 9 203‘?c,c1'25h >8 <10
OBz

6 D \J/ 7 4°C, 18 h 74 <10

[a] A=Keck catalyst;® B=Mikami catalyst;®") C=Corey catalyst derived
from (S)-tryptophan;I'” D =MacMillan imidazolidinone;"" [b] Bz=ben-
zoyl, PMB = para-methoxybenzyl, TBS =tert-butyldimethylsilyl; [c] yields
of isolated product; [d] determined by HPLC analysis on a chiral
stationary phase and by analysis of 250 MHz '"H NMR spectra using the
chiral shift reagent europium tris[3-(heptafluoropropylhydroxymeth-
ylene)-(+)-camphorate]
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Scheme 4. Chiral catalysts tested for the enantioselective Diels—Alder
reaction.

Instead of screening a library of chiral catalysts, we turned
to chiral auxiliaries, and very soon found that butadiene 10
reported by Trost et al.l" gave adduct 11 with good endo
selectivity (d.r.8:1) in 75% yield after chromatographic
separation (Scheme 5). The stereochemical implications of
Diels-Alder additions with the Trost diene have been
discussed in detail previously.!"”!

As a result of the lability of the ester group in 11 under
reductive and nucleophilic conditions, it was necessary to
introduce a stable protecting group. Classical saponification
conditions (K,CO; in MeOH) led to rapid decomposition of
the starting material 11. Therefore, we decided to convert 11
into diol 12 and to selectively protect the secondary alcohol by
using the para-methoxybenzylidene acetal formation and
reduction procedure.” Reduction of 11 with DIBAL-H gave
only low yields of 12. We overcame this problem by using an
excess of borane ammonia complex, thus affording diol 12 in
89% vyield. At this stage, 90 % of the chiral auxiliary was
recovered in form of the alcohol and could be recycled in one
step by oxidation.'”! Diol 12 was converted into the para-
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Scheme 5. Synthesis of the core fragment. CSA= (+)-camphor-10-
sulfonic acid, DIBAL-H = diisobutylaluminum hydride, NMO = 4-meth-
ylmorpholine N-oxide, DDQ = 2,3-dicyano-5,6-dichloro-parabenzoqui-
none, DMP = Dess—Martin periodinane.

methoxybenzylidene acetal and reduced to the PMB-alcohol
13 with DIBAL-H. The epoxide was formed from 13 using an
intramolecular Sy2-type substitution in excellent yield. Sub-
sequent dihydroxylation afforded the diol 14 in high diaste-
reoselectivity. The NMR coupling constants indicated that the
hydroxy group at C3 in 14 occupies an equatorial position and
should therefore be more reactive. Nevertheless, since the
hydroxy function at C3 is sterically encumbered by the vicinal
OPMB group, we were able to protect selectively the axial
hydroxy group at C4 with TBSCl. Use of the less bulky
triethylsilyl chloride led mainly to 3,4 disilylation. After
methylation and removal of the PMB group, the crystalline
alcohol 15 was isolated and characterized by X-ray analysis.!'*!
Interestingly the bulky TBS group was found to still occupy
the axial position. Oxidation with Dess—Martin periodinane
produced the core fragment 16.

We next turned to the synthesis of side chain 17.
Surprisingly, even after numerous repetitions and modifica-
tions, the published route!®! only gave an inseparable (ca. 4:1)
mixture of 17 and its isomer 18 (Scheme 6). For this reason,
we had to develop an alternative route.

J\/\)\ JL/\)\
Br Br
17 18

Scheme 6. Products formed following the published route.*
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Vinyl stannane 19,7 which was prepared in one step from
2,3-dihydrofuran, was brominated with NBS and then oxi-
dized to the labile aldehyde 20 (Scheme 7). Wittig olefination
of 20 failed, but the Julia—Kocienski!'® reaction with sulfone
21 furnished the isomerically pure (E)-vinylbromide 17 in
good overall yield.

oo
N i
OH o N z
1)NBS, CH,Cly, 99% (% N 07/
> 17
\ 2) DMP, NaHCO, | LHMDS, THF
CH,Clp, 94% ~78°C —RT
SnBu, 212 Br 70%
19 20

Scheme 7. Synthesis of the side chain. NBS = N-bromosuccinimide,
LHMDS = lithium hexamethyldisilazide.

Freshly prepared vinylbromide 17 was lithiated with zert-
butyllithium and coupled to the core fragment 16 to yield
alcohol 22 stereoselectively (Scheme 8). Removal of the TBS
group proceeded smoothly with tetra-n-butylammonium

o= 17, (BuLi
i:\/ro Et,0, toluene
B —
: “OMe 76% ; b/’OMe
OTBS 16 OTBS 99
TBAF, THF DMP, NaHCO3

0°C, 30 min CH,Cl,, 90%
— > _

94%

[VO(acac),], tBuOOH
benzene

71 % (Ref. [7c], 64 %)

Scheme 8. Completion of total synthesis. TBAF =tetra-n-butylammo-
nium fluoride, [VO (acac),] =vanadyl acetylacetonate.

fluoride at 0°C to deliver the known diol 23.7 Oxidation
with Dess—Martin periodinane and stereoselective epoxida-
tion"*! yielded (—)-ovalicin (1), of which the analytical data
were fully in accord with those of natural ovalicin. See the
Supporting Information.

In summary, ovalicin was prepared in 15 linear steps
enantio-, diastereo-, and regioselectively with an overall yield
of 15%. The efficiency of the synthesis depended on the
excellent endo selectivity of the initial Diels—Alder reaction
that paved the way for all the equally selective transforma-
tions to follow.
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