Enantioselective Organo-Cascade Catalysis

Huang, Y.; Walji, A. M.; Larsen, C. H.; MacMillan, D. W. C. JACS, 2005, ASAP

Erick B. Iezzi, PhD Current Literature October 15, 2005

Why are these articles significant?

- Use chiral amines as enantioselective catalysts (iminium and enamine intermediates) to rapidly assemble complex structures
- MacMillan and co-workers use amine catalysts to mimic an enzymatic 'cascade catalysis' that controls product stereochemistry via intermolecular reactions
- List and co-workers use a single amine catalyst to generate complexity via an intramolecular tandem sequence
- Both achieve products with high yields and selectivities (diastereo- and enantioselectivity) under user-friendly conditions with safe and simple starting materials

Asymmetric Aminocatalysis

- Amines can activate carbonyl groups (i.e., acetone) as do Lewis or Brønsted acids
 - Iminium ion enhances both electrophilicity and α -C-H-acidity
- Two aminocatalytic pathways:
 - 1. Iminium catalysis Knoevenagel-type condensations, cyclo- and nucleophilic additions
 - 2. Enamine catalysis Electrophilic addition and pericyclic reactions
- Aminocatalysis is a biomimetic strategy used by important enzymes such as class I aldolases (enamine catalysis) and ketoacid decarboxylases (iminium catalysis)

Direct Catalytic Asymmetric Three-Component Mannich Reaction (List and co-workers)

CHO
$$\frac{\text{NH}_2}{\text{NO}_2}$$
 + $\frac{\text{L-Proline}}{\text{DMSO}}$ $\frac{\text{OMe}}{\text{S0}\%}$ $\frac{\text{OMe}}{\text{NO}_2}$ $\frac{\text{OMe}}{\text{NO}_2}$ $\frac{\text{OMe}}{\text{OMe}}$ $\frac{\text{OMe}}{\text{S0}\%}$ $\frac{\text{OMe}}{\text{S0}\%}$ $\frac{\text{OMe}}{\text{NO}_2}$ $\frac{\text{OMe}}{\text{S0}\%}$ $\frac{\text{OM$

List, et al. J. Am. Chem. Soc. 2000, 122, 9336-9337

Direct Catalytic Asymmetric α-Amination of Aldehydes (List and co-workers)

List, et al. J. Am. Chem. Soc. 2002, 124, 5656-5657

New Strategies for Organic Catalysis: The First Highly Enantioselective Organocatalytic Diels-Alder Reaction (MacMillan and co-workers)

Catalysts

entry	catalyst	time (h)	yield (%)	exo:endo	<i>exo</i> ee (%) ^{<i>a,b</i>}
1	(S)-Pro-OMe•HCl	27	81	2.7:1	48 (2 <i>R</i>)
2	(S)-Abr-OMe•HCl	10	80	2.3:1	59 (2 <i>S</i>)
3	5	23	92	2.6:1	57 (2 <i>R</i>)
4	6	84	82	3.6:1	74(2R)
5	7	8	99	1.3:1	$93 (2S)^c$

MacMillan, et al. *J. Am. Chem. Soc.* **2000**, *122*, 4243-4244

Enantioselective Organo-Cascade Catalysis (ASAP Article, MacMillan and co-workers)

- Use amine catalysts to perform a 'cascade catalysis' of discrete events that mimic a biocatalytic assembly line, as opposed to the traditional 'stop and go' sequences
 - Specifically, polyketide natural products (i.e., erythromycin and actinomyces) are assembled by polyketide synthases, which perform a successive decarboxylative condensations of simple precursors

(Khosla, et al. Annu. Rev. Biochem. 1999, 68, 219)

• Imidazolidinone-based catalytic cycles are used to generate complex structures without catalyst-catalyst interactions

Cascade Catalysis: Merging Iminium (Im) and Enamine (En) Activation

MacMillan, et al. J. Am. Chem. Soc. 2005, ASAP

Organo-Cascade Catalysis: Effect of Catalyst and Solvent

entry	catalyst	solvent	% conversion ^a	dr (syn:anti) ^b	% ee ^c
1	9	EtOAc	3	1:1	88
2	10	EtOAc	10	5:1	89
3	11	EtOAc	79	9:1	97
4	12	EtOAc	78	8:1	97
5	13	EtOAc	78	11:1	99
6	13	CHCl ₃	54	8:1	94

^a Conversion determined by GLC analysis of product relative to an internal standard (benzyl methyl ether). ^b Absolute and relative configuration assigned by chemical correlation. ^c Enantiomeric excess determined by chiral GLC analysis (Bodman β -DM).

Organo-Cascade Catalysis: Scope of Enal Component and Representative Nucleophiles

^a Absolute and relative configuration assigned by chemical correlation. ^b Enantiomeric excess determined by chiral GLC analysis.

^a Absolute and relative configuration assigned by chemical correlation. ^b Superior yields were obtained when the electrophile was added after consumption of the silyloxy furan.

Organo-Cascade Catalysis: Employment of Discrete Amine Catalysts to Enforce Cycle-Specific Selectivities

MacMillan, et al. J. Am. Chem. Soc. 2005, ASAP

Summary

MacMillan and co-workers:

- Developed a new strategy for organo-catalysis based on the biochemical blueprints of cascade catalysis
- Rapid access to structural complexity while achieving exquisite levels of enantiocontrol (combining catalytic cycles leads to enantioenrichment)
- Studies in the area of triple cascade catalysis are underway