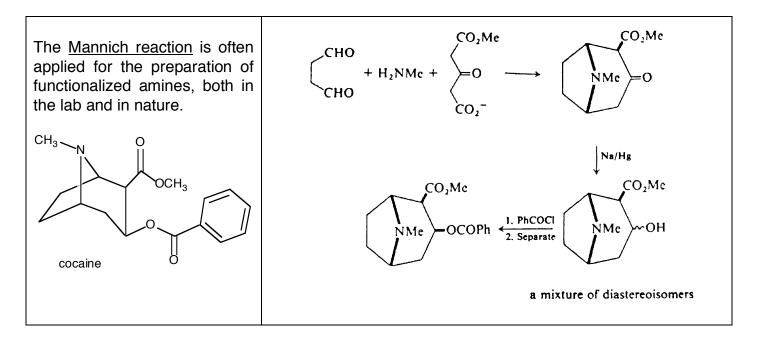
Amines


Amines are moderately strong organic bases; their pK_a is a function of relative resonance stabilization and inductive effects. Amines are also good nucleophiles and react with a variety of carbonyl compounds and carboxylic acid derivatives as well as other electrophiles.

Preparations of amines:

Starting Material	Reagent	Intermediate	Reagent in 2. Step	Product
R-X R= prim. or sec. alkyl group	NH ₃	⊕ ⊖ R-NH ₃ X	⊖ RX; OH	R-NH ₂ R ₂ NH R ₃ N R ₄ N ⁺ X ⁻
R-X	NK	N-R	H ₂ NNH ₂	R-NH ₂
R-X	NaCN	R-CN	H ₂ , Pd or LAH	R-CH ₂ NH ₂
R-X	Na N ₃	R-N ₃	H ₂ , Pd or LAH	R-NH ₂
Ar-NO ₂	H ₂ /Pd or Fe/HCl		-	Ar-NH ₂
R R'	R"-NH ₂	N,R" R	H ₂ , Pd or NaCNBH ₃	HN R"
O R N-R' H	1. NaH 2. R"-X	O R N R' R"	LAH	R'\N_R"
$R \stackrel{O}{\downarrow}_{NH_2}$	Na OBr	O R N Br H	OH ⁻ , H ₂ O	R-NH ₂

Diazomethane can be generated by base treatment of N-methyl-N-nitrosourea and is a useful methylating agent for carboxylic acids. In the presence of Cu, or by heating or irradiation, diazomethane is converted to methylene carbene and cyclopropanates alkenes. A zinc carbenoid is generated in the Simmons-Smith reaction, and base treatment of chloroform provides dichloromethylene carbene for alkene cyclopropanation reactions.

Starting Material	Reagent	Intermediate	Reagent in 2. Step	Product
R-NH ₂ R= alkyl or aryl	NaNO ₂ , HCI	$ \begin{array}{ccc} & \bigoplus & \bigoplus \\ R-N \equiv N & CI & \prec \\ & & \downarrow R=alkyl \\ & & \downarrow R=alkyl & \bigoplus \\ N_2 + R & + CI & & \Box \end{array} $	CuX (CuCl, CuBr, CuCN)	Ar-X
			KI ⊕ H₃O, heat	Ar-I Ar-OH
			D-	N=N-Ar
				Azo compound
HNR ₂	NaNO ₂ , HCI		-	R ₂ N-N=O <i>N-Nitroso compound</i>
RR'NH	TsCl, pyridine		-	TsNRR'
R-CH ₂ CHR' NH ₂	MeI (excess) OH, H ₂ O	1414103	⊖ Ag₂O, heat anti elimination	R-CH=CHR'
		⊕ ~	Hofmann rule the least subs	: stituted olefin is formed

