Midterm I - Answer Key

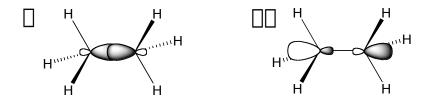
A. (20 points) Draw the product of each of the following reactions:

CHEM 0310 Page 2

B. (30 points) Draw **Newman projections** of butane in the **anti**, **gauche**, and **eclipsed** conformations. What is the energy difference between these conformations? How many different eclipsed conformations are possible?

anti
$$H_{3}$$
CH $_{3}$ 0 kcal/mol H_{3} CH $_{3}$ 0.9 kcal/mol H_{4} H $_{5}$ CH $_{3}$ H_{4} H $_{5}$ CH $_{3}$ H_{4} CH $_{3}$ H_{4} CH $_{3}$ H_{4} CH $_{3}$ H_{4} CH $_{3}$ H_{5} CH $_{3}$ H_{5} CH $_{3}$ CH $_{4}$ 9 kcal/mol H_{5} CH $_{4}$ CH $_{3}$ CH $_{4}$ CH $_{5}$ C

C. (20 points) The following structure shows a natural product that my research group has synthesized a few years ago. Assign the absolute configuration of all stereocenters. How many stereoisomers of this compound are possible?


While theoretically the presence of 3 stereocenters should result in a total of 8 stereoisomers, in this case only 4 are possible due to geometrical restrictions of the 3-6-ring fusion!

CHEM 0310 Page 3

D. (20 points) Which of the following molecules have a net dipole moment $\square = 0$?

Answer: All of them!

E. (20 points) Draw the bonding (\square) and the antibonding (\square^*) orbitals of the C-C bond in ethane.

F. (30 points) Draw the most stable conformation of *trans*-1-methoxy-3-methylcyclohexane and calculate the relative energy of all possible chair conformers. What ratio of the conformers would you expect based on these energy values?

A-value of MeO: 0.6 kcal/mol A-value of methyl: 1.7 kcal/mol

accordingly, the chair conformer with the equatorial methyl group is ca. 1.1 kcal/mol more favored, which translates into a ca. 7:1 ratio at 25 °C according to $\Box G$ =-RTInK

G. (30 points)) Write in full the mechanism for monochlorination of 2-methylpropane. Clearly indicate initiation, propagation, and termination steps. What do you expect to be the major product? What is the most reactive C-H bond?

initiation
ce hv > ce · + ce ·
propagation
(0. + H7C12-C-H -> C0-H + . C112-C-H
as as
-c12-c-+ ce-ce ce-c12-c-+ + ce.
a dis
termination
· C/2-C-H + CQ> CQCH-C-H
· ce + · ce > ce cus
· CP-C-H + · CF-C-H H-C-CP-C-H
9 9 9 9 9
major product: ce-cy-c-4 minor product: cy-c-ce
Cy Cy
most reachive bond: $H=c-ch$

CHEM 0310 Page 5

H. (30 points) Assign the absolute configuration of all stereocenters in the following compound and draw it in the Fischer projection. Is this a meso compound?

CHO
HO—H

H OH

OHC (S) (S)
$$CH_2OH$$

H OH
 CH_2OH
 CH_2OH

not a meso compound!