

The H-Cube- Continuous-flow Hydrogenation

Kathleen Battista, Regional Product Representative Thales Nanotechnology Inc.

H-Cube is a winner of the 2005 R&D 100 Award for the top 100 most technically significant products introduced to the market in 2005.

Thales Nanotechnology

- •Based in Budapest, Hungary.
- •Formed in 2002 and started specialising in microfluidics, "Lab on a Chip" chemistry.
- •Moved up in scale and onto designing reactors to suit specific
- hazardous reactions

H-Cube is a winner of the 2005 R&D 100 Award for the top 100 most technically significant products introduced to the market in 2005.

THALES

Why improve hydrogenation?

- Accounts for 10-15% of reactions in the chemical industry
- Current batch reactor technology has many disadvantages:
 - Time consuming and difficult to set up
 - Expensive separate laboratory needed!
 - Catalyst addition and filtration is hazardous
 - Analytical sample obtained through invasive means.
 - Mixing of 3 phases inefficient poor reaction rates

H-Cube is a winner of the 2005 R&D 100 Award for the top 100 most technically significant products introduced to the market in 2005.

THALES

- HPLC pump flows a continuous stream of solvent into reactor.
- Hydrogen generated from electrolysis of water
- Hydrogen is mixed with sample, heated and passed through a catalyst cartridge. Up to 100°C and 100 bar. (1 bar=14.5 psi)
- Hydrogenated product emerges continuously into reaction vial.

Catalyst System-CatCart

- •Catalyst contained in sealed disposable cartridges •No filtration necessary
- •Catalysts used: 10% Pd/C Raney Ni Pearlman's Catalyst 5% Rh/C 5% rhenium/C PtO₂ Lindlars catalyst

Smallest catalysts can reduce
10mg-5g of substrate
Largest CatCarts up to 100g results

THALES

How long can a CatCart[™] be reused?

H-Cube conditions: 0.1M, [50:50] EtOAc:EtOH, ~1 bar, 30 °C, 1 mL/min; **Total material processed** = 30x 1mmole fractions = 30 mmoles = 4.85 g with 140mg Pd/C

H-Cube System-Monitoring Screen

- New monitoring screen with 3 new modes
 - Full H₂
 - Controlled H₂
 - No H₂
- Allows greater reaction control and non-hydrogenations to be performed

THALES

THALES

Faster Optimization

- Monitor reaction progress after 4 minutes!
- Quickly change pressure and temperature and monitor the effect.
- 50 reaction conditions can be validated in a day.

Product Collection

H-Cube is a winner of the 2005 R&D 100 Award for the top 100 most technically significant products introduced to the market in 2005.

THALES

THALES **Chemistry Reaction Examples** Deprotection **Reductions** • Nitro group - N-benzyl - O-benzyl - Nitrile group – cBz - Imine **Deuteration** - Heterocycle - C=C bond – Alkyne - Dehalogenation - Desulphurization - Oxime

Validation reactions (Complex): 2-step-1 flow reaction

- •Batch reaction took 3 days
- •H-Cube performed reaction in 3 minutes!
- •70 bar, 70°C
- •Quantitative yield and conversion.

Validation reactions (Complex): Hazardous functional groups

Highly exothermic reaction

- •Low quantities react at any one time-higher safety
- •H-Cube monitors and regulates temperature.
- •High yield
- •3 group conversions in 1 flow through

H-Cube is a winner of the 2005 R&D 100 Award for the top 100 most technically significant products introduced to the market in 2005.

Validation reactions (Complex): High difficulty

Difficult to reduce stable aromatic heterocycles.

Ethanol, 10% Pd/C, 80-90°C, 60-70bar Scale 3-5 g, 1-2 hours 60-70% Yield, 95% NMR

Batch reaction took 3 days with incomplete conversion!

Hydrogenation without dehalogenation

T [°C]	p [bar]	Cat.	f.r. [ml/min]	sol.	LCMS [%]	Cycles
25	30	10% Pd/C	1	EtOH	65	1
25	30	10% Pd/C	1	EtOH	90	2

Mild conditions to avoid dechlorination!

H-Cube is a winner of the 2005 R&D 100 Award for the top 100 most technically significant products introduced to the market in 2005.

THALES

THALES Longer CatCarts=Faster Production R2 Difficult debenzylation-small R_{2} R1 CatCarts-incomplete conversion 100% conversion with longer CatCarts at 2ml/min % Conversion Against Increasing Concentration 120 Further tests carried out on 100 concentration % Conversion 80 60 4 40 Increase from 0.05M-0.1M 20 0 Production increased fourfold 0,05 0,2 0,1 Concentration (Molarity) Substrate 2 Substrate 3

Deuteration of double bond

- Using D₂O instead of H₂O produces D₂ gas
- Above experiment successful by NMR
 - Conditions: toluene solvent, RT, and 1 bar
- On-going experiments with LCMS sensitive reactants
- Looking for collaborative partners for future developments

H-Cube is a winner of the 2005 R&D 100 Award for the top 100 most technically significant products introduced to the market in 2005.

THALES

Cavro - H-Cube Integration

- H-Cube integrated into CAVRO work station
- Automated injection and collection

Timed injections

Richard Jones, Ferenc Darvas *et al*, QSC, 2005, 24 (6), 722-727; Journal of Combinatorial Chemistry, **2006**, *8*(*1*), 110-116

H-Cube is a winner of the 2005 R&D 100 Award for the top 100 most technically significant products introduced to the market in 2005.

THALES

•Reduction failed using cyanoborohydride or triacetoxyborohydride

•Reductions tested from 1-90 bar and RT- 90°C on H-Cube

- •Best results: 70mm Raney Ni cartridge, MeOH, 80 bar, 55 °C
- •Flow-rate: 2ml/min
- •50 compounds tested, 10 minutes per reaction, no contamination
- •100% conversion

•Useful for peptide synthesis or as an alternative to using BOC protecting grps-avoiding harsh acidic deprotection

•Preliminary results show 100% conversion at 70°C,1 bar, Using 10% Pd/C

•50-100 member library synthesis has been synthesized

H-Cube is a winner of the 2005 R&D 100 Award for the top 100 most technically significant products introduced to the market in 2005.

•Use of polymer supported borohydride reagents failed

•11 different imines were reduced on the H-Cube

•Best conditions 0.025M, 1ml/min, 10% Pd/C, RT, 20 bar

•Quantitative yield-side groups not reduced

•Further studies to link flow reactors to carry out multi-step syntheses

Saaby, S., Ladlow, M., Ley, S., Chem. Commun., 2005, 23, 2909 - 2911

Increasing diversity to library scaffolds

4 different scaffolds underwent Hydrogenolysis to afford yields

THALES

Afforded quant. Yield.

Batch reactor=1 hour reflux H-Cube=25 minutes

THALES

Future developments: X-Cube

H-Cube is a winner of the 2005 R&D 100 Award for the top 100

most technically significant products introduced to the market in 2005.

Continuous-flow reactions at high T and high pressure without hydrogen.

- •Temperature up to 200°C
- •Pressures up to 200 bar

Use of multiple cartridges for different steps

Heck reactions using Pd-EnCat

• H-Cube used in 'no H₂' mode as a generic flow reactor module for preliminary studies into Pd-mediated cross-coupling

 Reactions were conducted sequentially on a 5-10 µmol scale, residence time = 10-20 min

 CatCarts were packed with a variety of Pd catalysts

• Nb: Pd-EnCat[™] are polyurea microencapsulated Pd (0) particles

Reproduced with permission from Mark Ladlow, GSK

H-Cube is a winner of the 2005 R&D 100 Award for the top 10 most technically significant products introduced to the mark

Future X-Cube Chemistry

- Diels-Alder
- Diazo couplings
- Grignard reaction
- Carbanion chemistry
 Enamines
- Enol ethers
- Michael additions
- Pyrazole synthesis

- Suzuki
- Heck
- Evans auxiliary
- Ugi 4CC
- Amide synthesis
- Peptide synthesis

- Kumada
- Wittig
- Horner Wadsworth Emmons

THALES

- Hydroformylation
- Dehydration reactions
- Enzyme based reactions
- Aromatic nitration

	H-Cube, no H ₂ Pd catalyst	
, () + → O'Bu -		O'Bu
	DMF-Et₃N 100ºC, 40 bar.	0

Run	Catalyst	Flow Rate (ml/min)	Conversi on (%)	Purity (%)
1	10% Pd/C	0.1	66	9
2	10% Pd/C	0.1	84	19
3	10% Pd/C	0.1	81	7
1	Pd-EnCat [™]	0.1	100	55
2	Pd-EnCat™	0.1	88	81
3	Pd-EnCat™	0.1	76	76
4	Pd-EnCat [™]	0.1	80	80
1	Pd-EnCat™	0.05	100	93
2	Pd-EnCat [™]	0.05	100	100
3	Pd-EnCat™	0.05	94	94
4	Pd-EnCat™	0.05	91	92

H-Cube is a winner of the 2005 R&D 100 Award for the top 100 most technically significant products introduced to the market in 2005.

Ozonolysis with O-Cube

THALES

O-Cube can eliminate almost all disadvantages of current ozonolysis:

- •The ozone source is water
- •Continuous-flow method
- •Heat dissipation is much more efficient.

Reactions performed without cooling!

Reaction parameters (pressure, temperature, concentration, flow rate etc.) are easy to control.

Available in 2007!

Ozonolysis at Thales

-All the reactions were made at RT. --Selectivity up to 90%

Reactant / olefin	Conversion at RT (%)	
Stilbene	90	
Tetraphenylethylene	90	

Substituent on the indole (-R)	Content of 1 (%) ^a	Isolated Y % of 2	Reactivity of substituted indoles towards	
-	62		ozone	
5-Me	92	70		
5 MeO	83	60	OH isolation C	
5-C1	75	67	0 ₃ /red. R silicagel R	
4-Br	70			
5-Br	73		П	
6-Br	74			
7-Br	68			
5-I	75		*Yields are isolated yields determined after silica gel column cromatography, calculated on the converted product	
5-COOH	32			
5-COOEt	24			
5-NO ₂	10		Isolated products' structure are determined by the means of LCMS	
5-B(OH) ₂	26	17	and NMR spectroscopies.	

LCMS result of ozonolysis of 5-Me-Indole (raw product: 99% conversion, 99% selectivity)

Thank you for your attention! Any questions?

Kathleen.Battista@thalesnano.com www.thalesnano.com

