Green Chemistry: Recent Advances in Developing Catalytic Processes in Environmentally-Benign Solvent Systems

Frontiers of Chemistry Presentation Zhiyong Wang 2/2/2008

1

What is green chemistry?

➢ Green chemistry is the utilization of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture, and applications of chemical products.

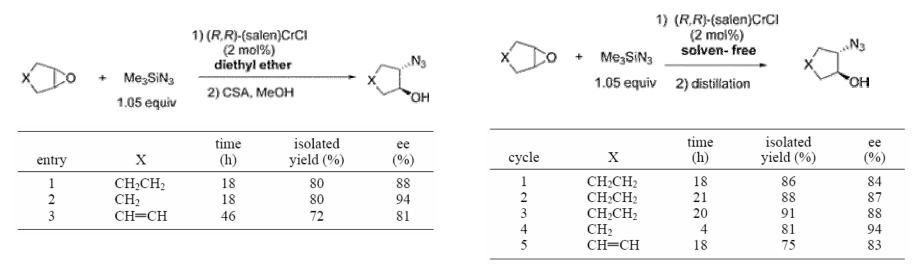
➤ The ideology of Green Chemistry calls for the development of new chemical reactivities and reaction conditions that can potentially provide benefits for chemical syntheses in terms of resource efficiency, energy efficiency, product selectivity, operational simplicity, and health and environmental safety.

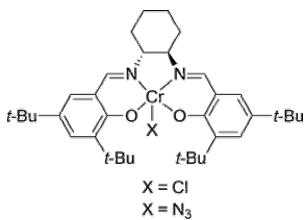
- Anastas, P. T.; Warner, J. C. *Green Chemistry: Theory and Practice*; Oxford University Press: Oxford, 1998.

Outline: Catalysis in Green Solvent Systems

- Asymmetric Catalysis in Solvent-Free and Highly Concentrated Reactions
- Catalyzed Reactions in Ionic Liquids
- Catalyzed Reactions in Supercritical Fluids
- Catalyzed Reactions in Water

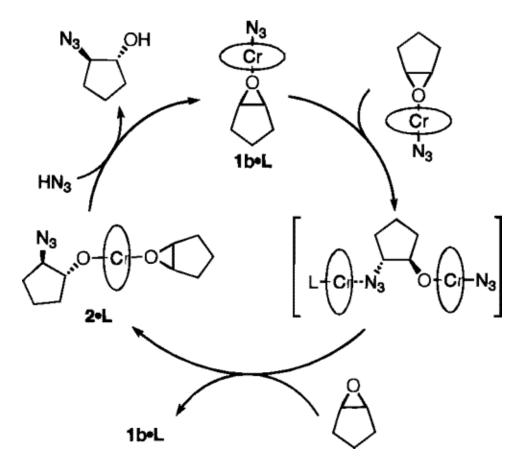
Part I: Asymmetric Catalysis in Solvent-Free and Highly Concentrated Reactions


Challenges for Developing Asymmetric Catalysis under Solvent-Free Conditions


Solvent greatly affects catalyst efficiency and enantioselectivity.

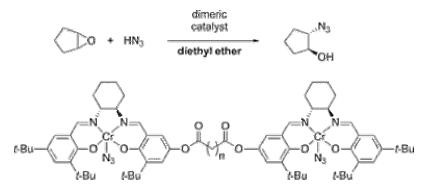
> Enantioselectivities are often dependent on catalyst concentration.

 \succ The impact on catalyst as the reaction medium changes from reactants and substrates to products is unpredictable.

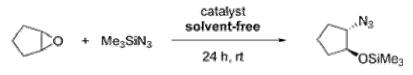

Asymmetric Epoxide Opening

Martinez, L. E.; Leighton, J. L.; Carsten, D. H.; Jacobsen, E. N. J. Am. Chem. Soc. 1995, 117, 5897.

Mechanism of Action



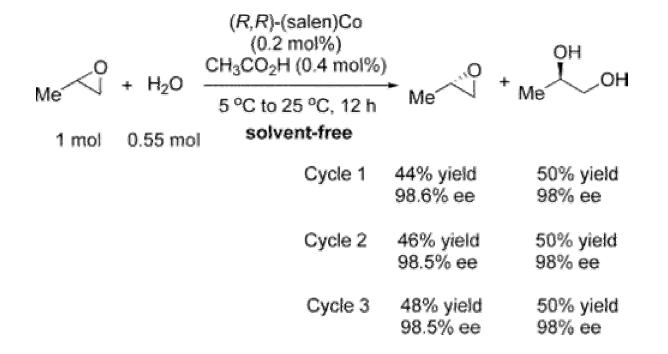
$r = k[cat]^2[TMSN_3]^0/[epoxide]$


Hansen, K. B.; Leighton, J. L.; Jacobsen, E. N. J. Am. Chem. Soc. 1996, 118, 10924.

6

Dimeric Catalyst for Enhanced Efficiency

n	ee (%)	k_{intra}^{a} (min ⁻¹ × 10 ⁻²)	$k_{\text{inter}} (M^{-1} \min^{-1})$
2	90	4.4	15.7
4	90	5.4	15.1
5	93	42.9	27.4
6	93	31.7	15.8
7	93	20.9	7.9
8	94	14.7	10.5
10	92	3.8	4.4


catalyst loading for complete conversion in 24 h

monomeric (salen)CrN₃ 1 mol% dimeric (n = 5) (salen)CrN₃

0.05 mol%

Konsler, R. G.; Karl, J.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 10780.

Hydrolytic Kinetic Resolution of Epoxides

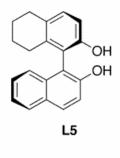
reaction performed on >200 kg scale!

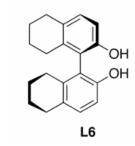
Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936.

Reaction Scope

	0			R,R)-(sale (0.2 - 2) OH	0.		
	R	+ H ₂ (0.2 ec	uiv	0 °C to solvent- highly con	free or	но _R +	Ĭ	R	
entry	epoxide substituent	conv. (%) ^c	diol ee (%)	k _{rel}	entry	epoxide substituent	conv. (%) ^c	diol ee (%)	k _{rel}
	Aliphati	c Epoxides			E	poxides Bearing Ether an	nd Carbonyl	Functionalit	у
1^a	CH ₃	19	99.5	500	12^{b}	CH ₂ OBn	20	97	83
2^a	$(CH_2)_3CH_3$	19	99.2	310	13 ^b	CH ₂ OTBS	18	99	250
$\frac{3^{b}}{4^{b}}$ 5^{b}	(CH ₂) ₁₁ CH ₃	18	99.5	490	14^{b}	CH ₂ OPh	18	98	120
4^b	$(CH_2)_2CH=CH_2$	20	99.4	420	15^{b}	CH ₂ O(1-naphthyl)	20	99	250
5^b	CH_2Ph	20	97.4	96	16^{b}	CH ₂ CH ₂ OBn	19	97	82
6^b	<i>с</i> -С ₆ Н ₁₁	19	99.6	630	17^{b}	oxiranyl ^d	20	98	130
7^b	t-C ₄ H ₉	16	97.0	79	18^{b}	CH ₂ OCOn-C ₃ H ₇	54	99.4	68
	Halogena	ted Epoxides			19^{b}	CH ₂ CO ₂ Et	20	98	130
8^b	CH ₂ Cl	20	98.7	190	20^{b}	CH ₂ NHBoc	18	74	7.8
9^b	CH ₂ Br	20	96	49	21^{b}	CO_2CH_3	19	98	120
10 ^a	CH ₂ E CH ₂ F	17	98	120	22^b	COCH ₃	18	97	81
11 ^a	CF ₃	18	99.6	620	23 ^b	COCH ₂ CH ₃	18	96	60
			e	poxide	conv.	diol			

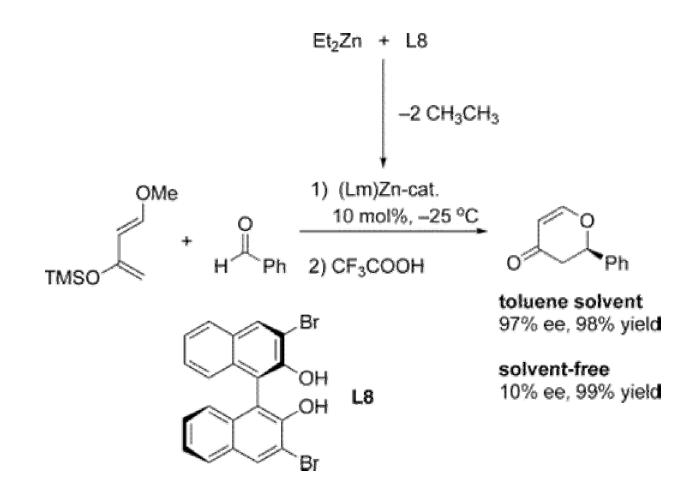
	epoxide	conv.	diol	
entry	substituent	(%) ^c	ee (%)	k _{re1}
	Aryl, Vinyl, and	l Alkynyl Epo	xides	
24^{b}	C_6H_5	20	98	130
25^{b}	$4-CIC_6H_4$	18	97	81
26^b	3-CIC ₆ H ₄	17	98	120
27^{b}	3-(CH ₃ O)C ₆ H ₄	19	98	120
28^b	3-(NO ₂)C ₆ H ₄	19	99	280
29^{b}	2-CIC ₆ H ₄	18	98	120
30 ^b	CH=CH ₂	18	98	120
31^{b}	CCTBS	19	99.4	420

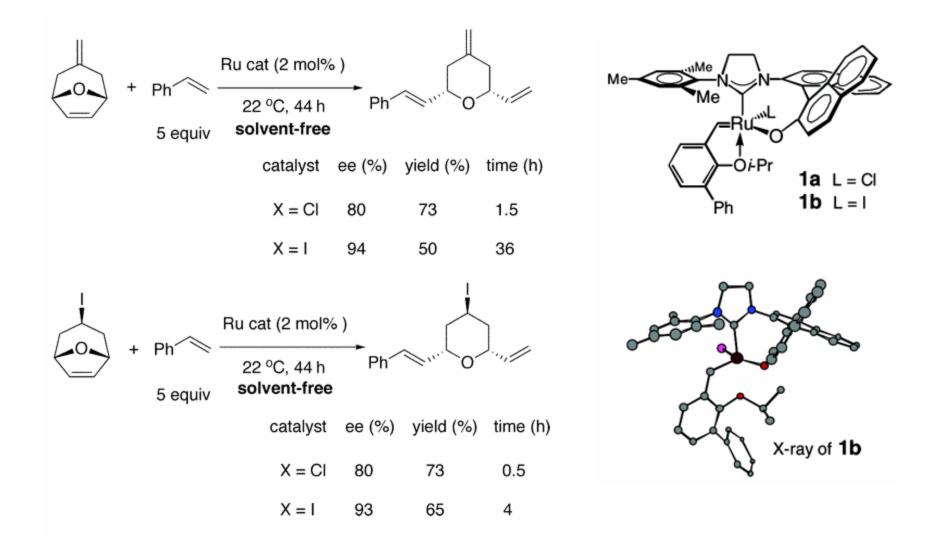

^{*a*} Solvent-free. ^{*b*} Highly concentrated with epoxide/THF = 1:1 v/v ratio. ^{*c*} Isolated yield of 1,2-diol. ^{*d*} The substrate was d,l-butadiene diepoxide.


Schaus, S. E. et al. J. Am. Chem. Soc. 2002, 124, 1307

Asymmetric Hetero-Diels-Alder Reaction

OMe	ö	1) (Lm)(Ln)Ti-based catalyst solvent-free	٩	(8)
тмзо	н ^{,,,} ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2) CF ₃ COOH	0 ^A R	(0)

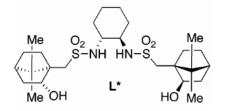

		(L5)2	Ti		((L5)(L6)Ti			
aldehydes	loading (%)	time (h)	yield (%)	ee (%)	loading (%)	time (h)	yield (%)	ee (%)	
benzaldehyde	0.05	24	>99	99.3	0.05	24	82	99.4	
p-anisaldehyde	0.05	48	>99	90.8	0.05	48	>99	98.0	
m-anisaldehyde	0.05	48	81	96.6	0.05	48	82.6	99.8	
o-anisaldehyde	0.05	48	95	75.1	0.05	48	>99	95.1	
3-phenylpropion- aldehyde	0.05	96	>99	97.9	0.05	96	>99	98.3	
<i>trans</i> -cinnam- aldehyde	0.1	96	82	98.4	0.05	96	56.6	96.6	
furfural	0.05	48	>99	99.2	0.05	48	>99	99.7	
furfural	0.01	96	37	94.7	0.01	96	>99	97.7	
furfural					0.005	144	63	96.2	
<i>m</i> -tolualdehyde	0.1	48	95	98.5	0.05	48	92	99.5	
1-naphth- aldehyde	0.05	48	55	85.6	0.05	48	65	98.5	
<i>p</i> -cyanobenz- aldehyde	0.1	48	>99	92.9	0.05	48	98.4	97.9	
<i>m</i> -bromobenz- aldehyde	0.1	48	>99	97.4	0.05	48	98.3	97.6	
<i>p</i> -bromobenz- aldehyde	0.05	48	>99	98.0	0.05	48	>99	98.4	
<i>p</i> -chlorobenz- aldehyde	0.05	48	>99	91.2	0.05	48	>99	99.1	
<i>p</i> -nitrobenz- aldehyde	0.05	48	>99	97.3	0.05	24	>99	99.4	


Long, J.; Hu, J. Y.; Shen, X. Q.; Ji, B. M.; Ding, K. L. J. Am. Chem. Soc. 2002, 124, 10.

Solvent Effect

Du, H.; Long, J.; Hu, J.; Li, X.; Ding, K. Org. Lett. 2002, 4, 4349.

Asymmetric Ring-Opening Metathesis



Gillingham, D. G.; Kataoka, O.; Garber, S. B.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 12288

Asymmetric Addition of Organozinc Reagents to Ketones

		+ ZnR ₂ + R ₂ 3 equiv	Ti(O <i>i-</i> P 1.2 equ		L*(cataly solvent-f nighly co		\xrightarrow{HO}_{R_1}	R K _{R2}		
		solver	nt-free or h	ighly c	oncentrat	ted conditi	ions st	andar	d conditio	ns
entry	substrates	ZnR ₂	L* (mol%)	t (h)	y (%)	ee (%)	L* (mol%)	t (h)	y (%)	ee (%)
1		Zn((CH ₂) ₄ OTBS) ₂	1	48	68	79 ^a				
	0		0.5	70	53	80 ^a	10	72	89	98
ſ	\sim		0.25	82	44	69 ^a	10	12	00	00
Į	\square		1	40	68	97 ^b				
2	-	Zn((CH ₂) ₅ Br) ₂	1	46	66	92 ^a				
			0.5	50	41	92 ^a	10	72	89	96
		the book	1	46	71	97 ^b				

^a Solvent-free conditions. ^b Concentrated reaction conditions (2 equiv toluene was added to the reaction).

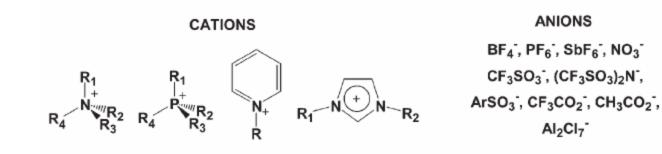
Jeon, S.-J.; Li, H.; García, C.; LaRochelle, L. K.; Walsh, P. J. J. Org. Chem. 2005, 70, 448.

Part I: Summary

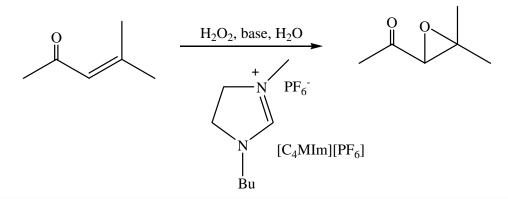
➤ Asymmetric catalyst under solvent-free or highly concentrated conditions could result in stereoselectivity that rivals or even surpass what is obtained with reactions in organic solvents.

> Sometimes the presence of organic solvent is necessary to achieve high enantioselectivity/diastereoselectivity, and a screening should be performed to find the minimal amount of solvent in need, or a switch to the "green" solvent should be explored.

➤ Reactions conducted in the absence of solvent can rapidly generate heat, and precautions should be observed especially with large-scale reactions.


Part II: Ionic Liquid as A Solvent for Catalyzed Reactions

 \succ Ionic liquids are substances that are completely composed of ions and are liquid at or close to room temperature.


 \succ Ionic liquids are nonvolatile and thermally stable, and their polarity, hydrophobicity, and solvent miscibility behavior could easily be tuned through appropriate modification of the cation and the anion.

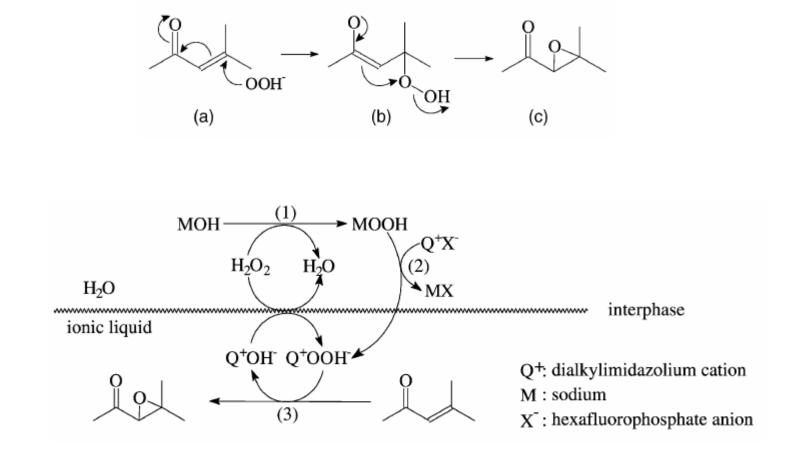
 \succ The reaction product can generally be separated either through extraction or distillation from the ionic media, enabling recycling of the ionic liquids.

 \succ Unique reactivities might be observed in ionic media.

Epoxidation Reactions

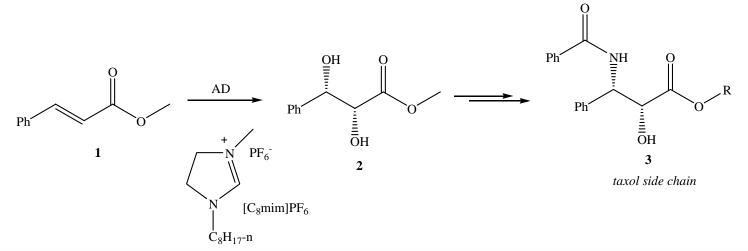
Entry	Catalytic system	Catalyst	Base	Temperature (°C)	Conversion $(\%)^b$	Selectivity (%) ^c
1	[C4MIm][PF6]/H2O	_	_	15	1	95
2	$[C_4MIm][PF_6]/H_2O$	_	Na ₂ CO ₃	15	86	91
3	$[C_4MIm][PF_6]/H_2O$	_	NaHCO ₃	15	4	96
4	$[C_4MIm][PF_6]/H_2O$	_	NaOH	15	100	98
5	$[C_4MIm][PF_6]/H_2O$	_	NaOH	25	100	88
6	CH ₂ Cl ₂ /H ₂ O	TBAB ^d	NaOH	15	5	85

^a Reaction conditions: 0.5 ml mesityl oxide; 1.5 ml ionic liquid or 2 ml organic solvent; 2.5 ml aqueous hydrogen peroxide solution (30%); 0.9 ml aqueous NaOH solution (1N); 0.12 mmol catalyst for entry 6; 2.5 h.


^b Conversion of mesityl oxide.

^c Selectivity to α,β -epoxyketone.

^d Tetrabutylammonium bromide.


Wang, B.; Kang, Y.-R.; Yang, L.-M.; Suo, J.-S. J. Mol. Catal. A: Chem. 2003, 203, 29.

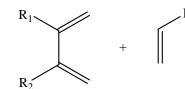
Biphasic Reaction Model

Wang, B.; Kang, Y.-R.; Yang, L.-M.; Suo, J.-S. J. Mol. Catal. A: Chem. 2003, 203, 29.

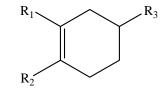
Sharpless Asymmetric Epoxidation

Run	Et ₂ O		Hexane		
	Yield (%) ^b (e.e. (%))	Os content (%) ^c	Yield (%) ^b (e.e. (%))	Os content (%) ^c	
1	79 (78)	< 0.05	41 (82)	< 0.05	
2	72 (79)	< 0.05	45 (77)	< 0.05	
3	75 (83)	< 0.05	48 (78)	< 0.05	
4	70 (81)	0.08	64 (76)	< 0.05	
5	77 (85)	< 0.05	67 (80)	< 0.05	
6	79 (81)	< 0.05	61 (78)	< 0.05	
	52 ^d (82)	_	142 ^d (77)	_	

^a Reaction conditions: 1 (0.55 mmol), NMO (1.3 mol equiv.), $K_2OsO_2(OH)_4$ (0.5 mol%), $(DHQD)_2PYR$ (1 mol%), $[C_8mim]PF_6$ (2 mL), RT, 24 h, followed by extraction with Et₂O or hexane (2×5 mL), removed the organic solvent and reload with substrate 1 and NMO.

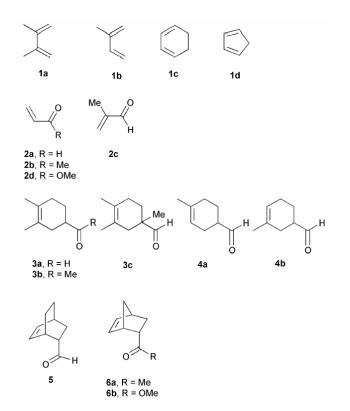

^b Isolated yield and enantiomeric excess (e.e. in brackets) of the diol 2 (%).

^c Percentage of osmium relative to initial amount detected by ICP in the combined organic phase (detection limit 0.05%).


^d After purification by flash chromatography, more diol 2 was isolated from the remaining ionic liquid (61 mg (52%) by extraction with Et_2O and 168 mg (142%) by extraction with hexane).

Serbanovic, A.; Branco, L. C.; da Ponte, M. N.; Afonso, C. A. M. J. Organomet. Chem. 2005, 690, 3600.

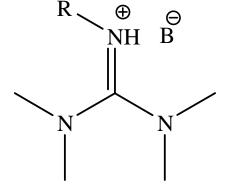
Diels-Alder Reaction



 $Me_3N(Cl)CH_2CH_2OH/MCl_2$ (1:2)

Entry	Diene	Dienophile	Product	Ratio ^c	М	Time	Yield (%)
1	1a	2a	3a	_	Zn	2 h	91
2 ^b	1a	2a	3a		Zn	2 h	91
3	1a	2b	3b		Zn	1 h	89
4	1a	2c	3c		Zn	5 h	91
5 ^b	1a	2c	3c		Zn	5 h	91
6	1b	2a	4ab	95:5 ^d	Zn	55 min	90
7	1c	2a	5	97:3	Zn	2 h	90
8	1d	2b	6a	96:4	Zn	8 min	94
9ь	1d	2b	6a	92:8	Zn	8 min	86
10	1d	2d	6b	83:17	Zn	30 min	89
11	1a	2a	3a		Sn	20 h	85
12 ^b	1a	2a	3a		Sn	20 h	89
13 ^b	1b	2a	4ab	95:5 ^d	Sn	24 h	88

^{*a*} Reactions carried out at ambient temperature. ^{*b*} Reactions carried out in the presence of an equivalent amount of water to metal. ^{*c*} Refers to *endo:exo* ratio. ^{*d*} Refers to the ratio of **4a:4b**.



Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Green Chem. 2002, 4, 24.

Heck Reaction

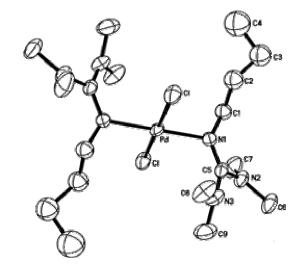
PhBr +	=	Pd P BILs 140 °C	n 🗸	$Ph + \longrightarrow Ph + Ph$	PhPh
			Х	Y	Z
entry	GIL	catalyst	t (h)	yield $(\%)^b$	TON
1	GIL1	$PdCl_2$	20	99	620
2	GIL2	$Pd(OAc)_2 \\$	2	99	620
3	GIL2	$PdCl_2$	0.25	99	620
4	GIL3	$Pd(OAc)_2$	4	0	0
5^c	GIL2	$PdCl_2$	20	98	9800
6^d	GIL2	$PdCl_2$	48	34	340000

^{*a*} Unless otherwise indicated, the reaction conditions were as follows: bromobenzene (5 mmol), styrene (6 mmol), GIL (6 mmol), PdCl₂ (0.16 mol %) or Pd(OAc)₂ (0.16 mol %), 140 °C. ^{*b*} Average of isolated yields of two runs. ^{*c*} Catalyst (0.01 mol %). ^{*d*} Catalyst (0.0001 mol %).

GIL 1: R = H, B = OAcGIL 2: R = n-butyl, B = OAcGIL 3: R = n-butyl, $B = PF_6$

Li, S.; Lin, Y.; Xie, H.; Zhang, S.; Xu, J. Org. Lett. 2006, 8, 391

Reaction Scope


	Ar-X + 🖍 R —	PdCl ₂	Ar	∧ _R
	G	IL2 140 °C		K
entry	aryl halide	R	<i>t</i> (h)	yield $(\%)^b$
1	C_6H_5I	Ph	0.25	99
2	C_6H_5I	$\rm CO_2Bu$	0.25	100
3	$p\operatorname{-MeC_6H_4I}$	\mathbf{Ph}	0.5	96
4	$p\operatorname{-MeC_6H_4I}$	$\rm CO_2Bu$	0.5	98
5	$p\operatorname{-MeC_6H_4Br}$	\mathbf{Ph}	1	96
6	$p\operatorname{-MeC_6H_4Br}$	$\rm CO_2Bu$	1	98
7	$p\operatorname{-MeOC_6H_4Br}$	\mathbf{Ph}	2	92
8	$p\operatorname{-MeOC_6H_4Br}$	$\rm CO_2Bu$	2	93
9	p-(CHO)C ₆ H ₄ Br	\mathbf{Ph}	0.25	99
10	p-(CHO)C ₆ H ₄ Br	$\rm CO_2Bu$	0.25	100
11	$p ext{-NO}_2 ext{C}_6 ext{H}_4 ext{Br}$	\mathbf{Ph}	0.25	99
12	$p ext{-NO}_2 ext{C}_6 ext{H}_4 ext{Br}$	$\rm CO_2Bu$	0.25	100
13	3-Br—Pyridine	\mathbf{Ph}	0.5	98
14	3-Br–Pyridine	$\rm CO_2Bu$	0.5	99
15	p -NO $_2$ C $_6$ H $_4$ Cl	\mathbf{Ph}	1.0	95
16	p -NO $_2$ C $_6$ H $_4$ Cl	$\rm CO_2Bu$	1.0	96
17	p-(CHO)C ₆ H ₄ Cl	\mathbf{Ph}	1.0	94
18	p-(CHO)C ₆ H ₄ Cl	$\mathrm{CO}_2\mathrm{Bu}$	1.0	97
19	C_6H_5Cl	Ph	5.0	10
20	C_6H_5Cl	$\mathrm{CO}_2\mathrm{Bu}$	5.0	12

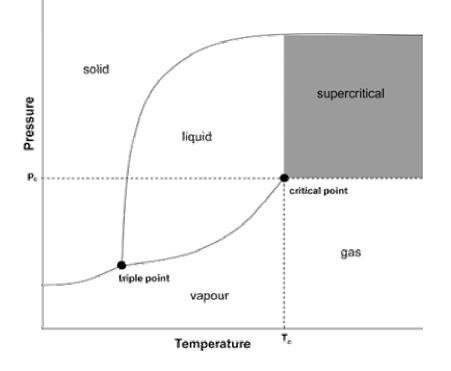
 a Unless otherwise indicated, the reaction conditions were as follows: aryl halide (5 mmol), olefin (6 mmol), GIL2 (6 mmol), PdCl₂ (0.16 mol %), 140 °C. b Average of isolated yields of two runs.

GIL2 functions as:

>a highly polar solvent to increase the reaction rate;

>a ligand to stabilize the activated Pd(0) during the reaction.

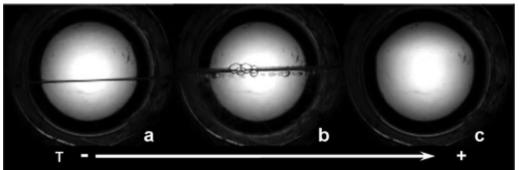
Li, S.; Lin, Y.; Xie, H.; Zhang, S.; Xu, J. Org. Lett. 2006, 8, 391.


Part II: Summary

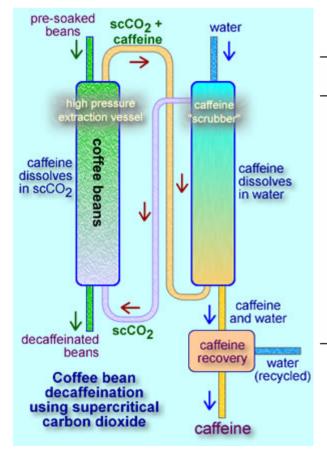
 \succ Ionic liquids are greener substitutes for the common volatile and hazardous organic solvents.

 \succ Separation of product is generally done by biphasic extraction or by distillation. The catalyst and ionic liquid can be recycled for usage.

 \succ A screening is usually needed to find the optimal ionic liquid for the reaction, and multi-step synthesis is sometimes needed to prepare the ionic liquid.


Part III: Supercritical Fluids

> A SCF is defined as the state of a compound or element above its critical temperature (*T*c) and critical pressure (*P*c) but below the pressure required to condense it into a solid.

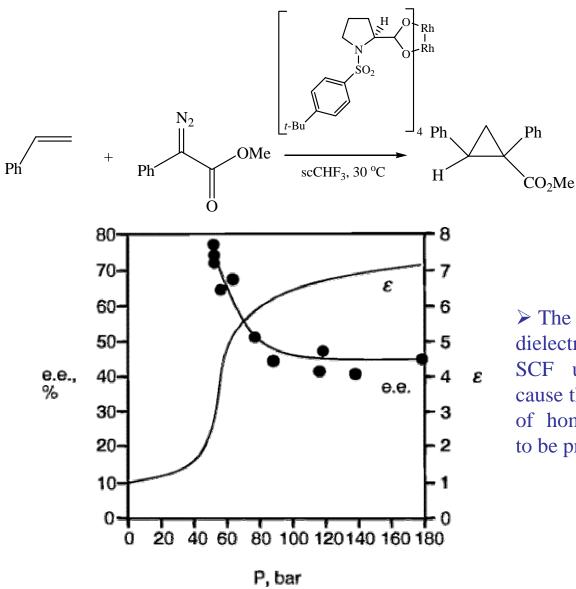

> The SCF possesses both gaseous and liquid properties. Whereas gas-like diffusivities and low viscosity coefficients allow the fluid to permeate through porous solids more quickly than a pure liquid could, liquid-like densities and dissolving powers allow the SCF to function as an effective reaction solvent.

>Small changes in temperature or pressure, particularly near the critical point, can result in dramatic changes in physical properties of the SCF.

Licence, P.; Litchfield, D.; Dellar, M. P.; Poliakoff, M. Green Chem. 2004, 6, 352.

Commonly Utilized SCFs

substance	T_{c} (°C)	$p_{\rm c}$ (bar)
carbon dioxide (CO ₂)	31.0	73.8
chlorodifluoromethane (ClF2CH)	-3.7	49.7
ethane (C_2H_6)	32.3	48.8
ethene (C_2H_4)	9.2	50.5
fluoroform (CHF ₃)	26.2	48.5
propane (C ₃ H ₈)	96.7	42.5
sulfur hexafluoride (SF_6)	45.5	37.7
water (H_2O)	374.0	221.0
xenon (Xe)	17.0	5.8


Enzymes in SCF

AcO Bn	OAc MeOH (2 equiv lipase, solvent		ОН НС +	Bn 3
Solvent	Conversion (%)	2 yield (%)	ee (%)	3 yield (%)
Hexane	68	59	0	9
Toluene	78	54	0	24
<i>i</i> -Pr ₂ O	91	56	0	35
1,4-Dioxane	67	27	7	40
MeOH	10	8	6	2
Pressure (MPa)	Conversion (%)	2 yield (%)	ee (%)	3 yield (%)
7	0	0	0	0
7.5	75	11	23	64
9	77	14	23	63
9.5	18	13	40	5
10	22	16	49	6
11	29	18	49	11
12	33	20	42	13
14	32	17	40	15
16	34	17	39	17
18	30	20	34	10
20	41	21	50	20

Reactions were carried out in the presence of methanol (10 equiv.) and CHIRAZYME® L-2 (1 g equiv.) at 40°C for 3 h.

Mase, N.; Sako, T.; Horikawa, Y.; Takabe, K. Tetrahedron Lett. 2003, 44, 5175.

Effect of Pressure Change

> The dependence of the dielectric constant of a SCF upon pressure can cause the enantioselectivity of homogeneous catalysis to be pressure dependent.

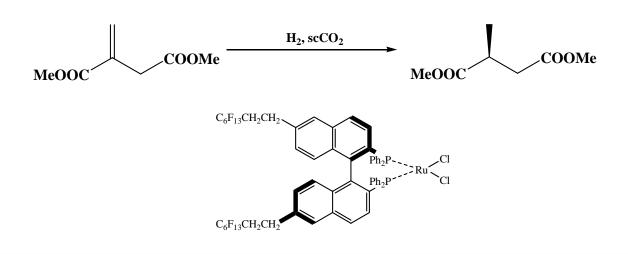
Wynne, D. C.; Olmstead, M. M.; Jessop, P. G. J. Am. Chem. Soc. 2000, 122, 7638-7647.

Asymmetric Hydrogenation

	MeOOC	C00		H ₂ (50 bar), Ru	H-L → MeOOC	c	ООМе	
		PPh ₂ PPh ₂	F ₁₃ C ₆	PPh ₂ PPh ₂	F ₁₃ C ₆ CH ₂ CH ₂ F ₁₃ C ₆ CH ₂ CH ₂	PPh ₂ PPh ₂		
Ligand	Solvent	$P_{CO_2} \ (bar)$	S/C	[Olefin] ^a	Temperature (°C)	Time (h)	Conversion (%)	ee (%)
1	Methanol		2000	6.3	22	0.25	97	95.4
2	Methanol		2000	6.3	22	0.25	75	95.3
3	Methanol		2000	6.3	22	0.25	100	95.7
2	CO_2	100	1000	0.11	80	24	100	73.0
3	CO ₂	100	1000	0.11	80	24	100	74.0
3	CO ₂	150	1000	0.11	80	24	94	76.0
3	CO_2	150	1000	0.11	100	24	100	70.6
3	CO_2	150	1000	0.11	50	24	29	75.0
3	CO ₂	150	2000	0.022	80	3	19	56.1
3	CO_2	180 ^b	2000	0.022	80	3	7	36.7
3	CO ₂ ^c	150	1000	0.11	80	3	92	93.6
3	CO ₂ ^{c,d}	150	1000	0.11	80	0.17	82	94.5
3	None		1000	Neat	80	1	74	71.6

^a Assuming that all the substrate was dissolved in mol dm⁻³.

^b 20 bar H₂.


Entry

 c 0.2 mL MeOH was introduced followed by H_2 and CO_2.

^d The reaction was quenched with a dry ice bath immediately after the CO₂ pressure reached 150 bar.

Hu, Y. L.; Birdsall, D. J.; Stuart, A. M.; Hope, E. G.; Xiao, J. L. J. Mol. Catal. A: Chem. 2004, 219, 57.

scCO₂ Not An Optimal Solvent

Entry	${\tt P}_{H_2} \ (bar)$	$P_{CO_2} \ (bar)$	Temperature (°C)	CH ₃ OH (mL)	Time (h)	Conversion (%)	ee (%)
1	50	10	80	0.20	1	100	95.2
2	50	20	80	0.20	1	100	96.2
3	50	40	80	0.20	1	100	92.0
4	50	60	80	0.20	1	95	79.8
5	50	100	80	0.20	1	65	84.6
6	50	150	80	0.24 ^b	3	13	73.6

^a Methanol was introduced at room temperature before hydrogenation took place. Two hundred milligram (1.3 mmol) substrate was used with S/C = 2000.

^b Methanol was introduced under seCO₂ conditions via a sample loop.

\triangleright Reduced polarity from methanol to scCO₂ caused lower catalyst activity and enantioselectivity.

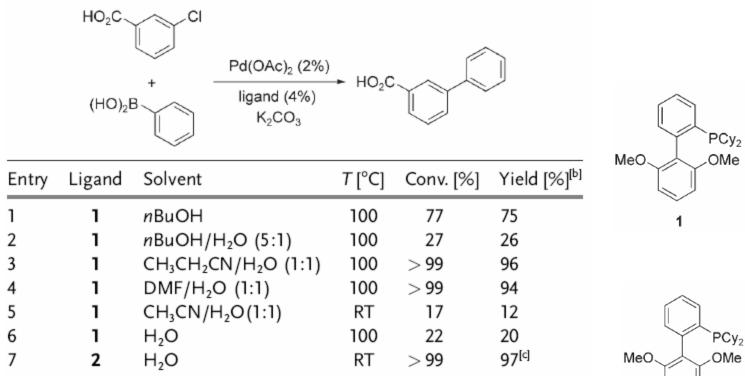
Hu, Y. L.; Birdsall, D. J.; Stuart, A. M.; Hope, E. G.; Xiao, J. L. J. Mol. Catal. A: Chem. 2004, 219, 57.

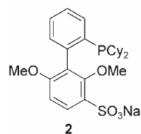
Part III: Summary

 \succ Enzyme-catalyzed reactions in scCO₂ generally provides superior results to those obtained in conventional organic solvents or solvent-free systems.

 \succ For organometallic-catalyzed reactions that are facilitated in polar solvent, SCFs are likely not the optimal solvents due their relatively low polarity. Thus new catalysts still need to be developed for efficient catalytic processes in SCFs.

> As compared to traditional organic solvent, $scCO_2$ is superior for extraction purposes.


Part IV: Catalyzed Reactions in Water

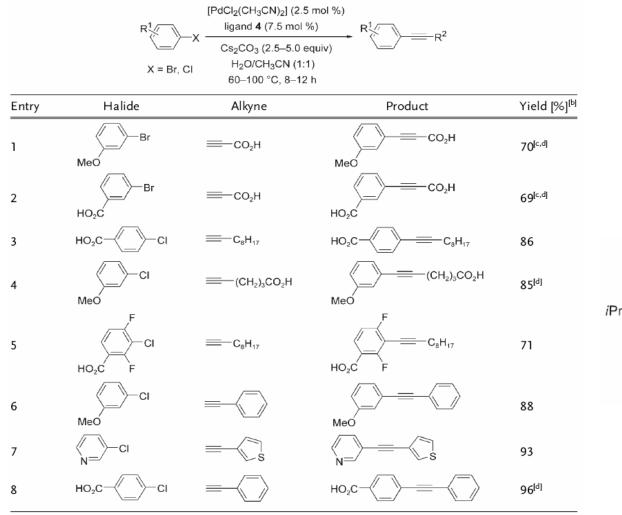

Water: the *Greenest* Solvent of All

- > The most abundantly existing liquid solvent
- > Nontoxic, nonflammable and environmentally benign
- > Unique reactivity and selectivity might result from the hydrophobic effects.

Suzuki-Miyaura Coupling

[a] Reaction conditions: 1.0 equiv aryl chloride, 1.2 equiv boronic acid, 3.0 equiv K_2CO_3 , solvent (2.0 mLmmol⁻¹), cat. Pd(OAc)₂, ligand 1 or 2, L/Pd = 2:1, 14 h. [b] Yield of product determined by NMR spectroscopy. [c] The reaction was complete in 2 h.

Anderson, K. W.; Buchwald, S. L. Angew. Chem. Int. Ed. 2005, 44, 6173.


Reaction Scope

Entry	Halide	Boronic acid	Product	Pd [mol%]	Conditions	Yield [%] ^[b]
1	Me CI	(HO) ₂ B	Me-	2	RT, 10 h	99
2		(HO) ₂ B Me	H ₂ N Me Me	1 1	100°C, 8 h 150°C, 10 min	99 94 ^[c]
3	HO ₂ C	(HO) ₂ B	HO ₂ C	2 0.5 0.1 0.1	RT, 2 h RT, 8 h 100°C, 5 h 150°C, 10 min	96 97 97 98 ^[c]
4	HO ₂ C	(HO) ₂ B	HO ₂ C Me	0.5 0.1	RT, 8 h 100°C, 6 h	95 96 MeO
5	HO ₂ C HO	(HO) ₂ B		2 0.1	RT, 12 h 100°C, 12 h	99 ^[d] 2
6	Me Me Me	(HO) ₂ B	Me Me Me Me	2	RT, 22 h	94
7	Me	(HO) ₂ B Me	Me Me Me	2	RT, 22 h	97

[a] Reaction conditions: 1.0 equiv aryl chloride, 1.2 equiv boronic acid, 3.0 equiv K_2CO_3 , degassed water (1.5 mLmmol⁻¹), cat. Pd(OAc)₂, ligand **2**, L/ Pd=2:1. [b] Yield of isolated product (average of two runs). [c] Conducted using microwave irradiation with cooling. [d] 4.0 equiv K_2CO_3 was used.

Anderson, K. W.; Buchwald, S. L. Angew. Chem., Int. Ed. 2005, 44, 6173.

Zhiyong Wang @ Wipf Group

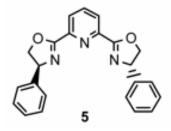
Sonogashira Coupling in Water

 $\equiv R^2$

[a] Reaction conditions: 1.0 equiv aryl halide, 1.3–1.5 equiv terminal alkyne, 2.5–5.0 equiv Cs₂CO₃, degassed water (2.0 mL mmol⁻¹), CH₃CN (2.0 mL mmol⁻¹), [PdCl₂(CH₃CN)₂] (2.5 mol%), ligand **4** (7.5 mol%), 100 °C, 8–12 h. Reaction times were not optimized. [b] Yield of isolated product (average of two runs). [c] The alkyne was added to the reaction at 0 °C and the mixture was heated to 60 °C. [d] To ease in purification, the product was converted to the methyl ester using trimethylsilyldiazomethane.

Anderson, K. W.; Buchwald, S. L. Angew. Chem., Int. Ed. 2005, 44, 6173.

PCy₂

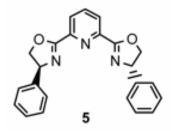

*i*Pr

SO₃Na 4

Asymmetric Addition to Imines in Toluene

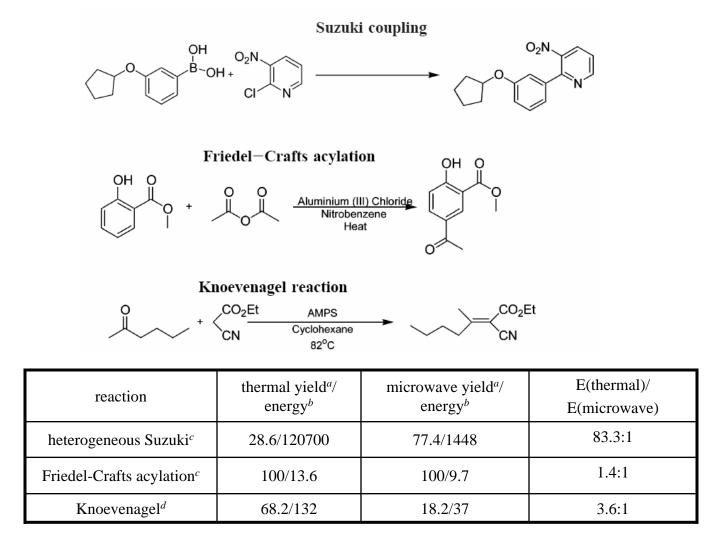
O ∐ + Ar'−NH₂	Ph	
Ar H	Cu(OTf) / Chiral ligand 5	Ar Ph

Entry	Aldehyde	Aniline	Temperature, °C/ time, days	Yield, %	OR/ ee %
1	PhCHO	PhNH₂	22/4	78	(+) 96
2	PhCHO	PhNH₂	35/2	83	(+) 93
3	4-CH ₃ C ₆ H₄CHO	PhNH₂	35/2	85	(+) 92
4	4-C ₂ H ₅ C ₆ H ₄ CHO	PhNH₂	22/4	70	(+) 96
5	4-C ₂ H ₅ C ₆ H ₄ CHO	PhNH ₂	35/2	73	(+) 95
6	4-ClC ₆ H₄CHO	PhNH₂	22/4	85	(+) 94
7	4-ClC ₆ H₄CHO	PhNH₂	35/2	90	(+) 92
8	4-BrC ₆ H₄CHO	PhNH ₂	22/4	87	(+) 94
9	4-BrC ₆ H₄CHO	PhNH₂	35/2	90	(+) 92
10	3-BrC ₆ H₄CHO	PhNH₂	22/4	85	(+) 95
11	3-BrC ₆ H₄CHO	PhNH ₂	35/2	88	(+) 92
12	4-PhC ₆ H₄CHO	PhNH₂	22/4	81	(+) 94
13	4-PhC ₆ H₄CHO	PhNH₂	35/2	85	(+) 90
14	2-NaphCHO	PhNH ₂	22/4	63	(+) 88
15	2-NaphCHO	PhNH₂	35/2	67	(+) 82
16	4-CF ₃ C ₆ H₄CHO	PhNH₂	22/4	71	(+) 93
17	PhCHO	4-BrC ₆ H₄NH₂	35/2	93	(+) 91
18	PhCHO	4-ClC ₆ H₄NH₂	35/2	92	(+) 91
19	PhCHO	$4-CH_3C_6H_4NH_2$	35/2	93	(+) 94



Wei, C.; Mague, J. T.; Li, C.-J. Proc. Nat. Aca. Sci. 2004, 101,5749.

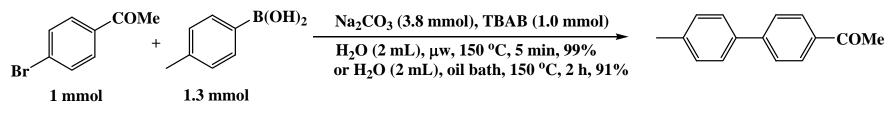
Asymmetric Addition to Imines in Water


<u>о</u>	──Ph	HŅ´ ^{Ar'}
Ar H + Ar'-NH2	Cu(OTf) / Chiral ligand	5 _{Ar}

Entry	Aldehyde	Aniline	Temperature, °C/ time, days	Yield, %	OR/ ee %
1	PhCHO	PhNH₂	22/4	71	(+) 84
2	PhCHO	PhNH₂	35/2	77	(+) 80
3	4-CH ₃ C ₆ H ₄ CHO	PhNH₂	35/2	86	(+) 81
4	4-C ₂ H ₅ C ₆ H ₄ CHO	PhNH₂	22/4	68	(+) 89
5	4-C ₂ H ₅ C ₆ H ₄ CHO	PhNH₂	35/2	68	(+) 78
6	4-ClC ₆ H₄CHO	PhNH₂	22/4	70	(+) 87
7	4-ClC ₆ H₄CHO	PhNH₂	35/2	74	(+) 85
8	4-BrC ₆ H₄CHO	PhNH₂	22/4	63	(+) 87
9	4-BrC ₆ H₄CHO	PhNH₂	35/2	74	(+) 85
10	3-BrC ₆ H₄CHO	PhNH₂	22/4	69	(+) 85
11	3-BrC ₆ H₄CHO	PhNH₂	35/2	72	(+) 82
12	4-PhC ₆ H₄CHO	PhNH₂	22/4	48	(+) 84
13	4-PhC ₆ H₄CHO	PhNH₂	35/2	56	(+) 82
14	2-NaphCHO	PhNH₂	22/4	57	(+) 86
15	2-NaphCHO	PhNH₂	35/2	65	(+) 78
16	4-CF₃C ₆ H₄CHO	PhNH₂	22/4	56	(+) 87
17	PhCHO	4-BrC ₆ H₄NH₂	35/2	82	(+) 83
18	PhCHO	4-ClC ₆ H₄NH ₂	35/2	77	(+) 84
19	PhCHO	$4-CH_3C_6H_4NH_2$	35/2	68	(+) 91

Wei, C.; Mague, J. T.; Li, C.-J. Proc. Nat. Aca. Sci. 2004, 101,5749.

Microwave-Assisted Reactions in Water


^{*a*} % yield.^{*b*} kW/mol.^{*c*} GC yield.^{*d*} GC yield corrected by R_{f}

Gronnow, M. J.; White, R. J.; Clark, J. H.; Macquarrie, D. J. Org. Process Res. Dev. 2005, 9, 516.

Ligand-Free Suzuki Coupling in Water

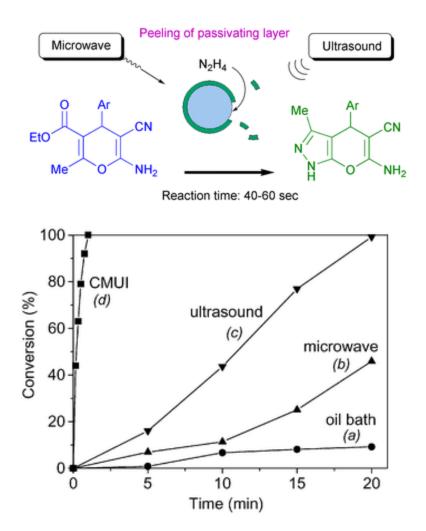
$Pd(OAc)_2 \pmod{\%}$	TBAB	temp (°C)	time (min)	yield (%)
5		200	5	32
0.4		150	5	40
0.4	1 equiv	150	5	96

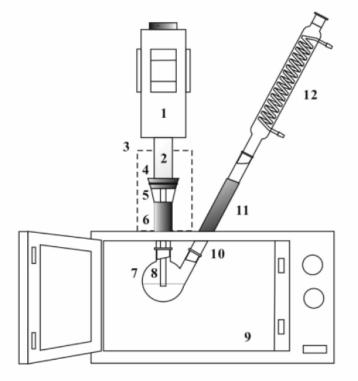
Transition Metal-Free Catalysis?

"To show that the reaction is indeed transition-metal free, we used new glassware, apparatus, reagents (not only were new bottles of reagents used but also a range of suppliers' reagents were screened in the reaction and all found to lead to the same yields of biaryl formation), and spatula and analyzed the entire crude product mixture from a reaction for palladium content. We found that there was no palladium in the mixture down to the level of detection of the analytical apparatus (less than 0.1 ppm)."

> Leadbeater, N. E.; Marco, M. *Org. Lett.* **2002**, *4*, 2973. Leadbeater, N. E.; Marco, M. *J. Org. Chem.* **2003**, *68*, 5660.

Pd Is Ubiquitous


> A careful reanalysis revealed 20-50 ppb of Pd in commercially available *ultrapure* Na_2CO_3 .


В	r R	+		, TBAB (1.0 equiv.) I ₂ O, 150 °C	•	R
entry		reaction cond	litions		product yield %	
	Pd loading	base	heating method	Br	Br	Br
1	100 ppb	Na ₂ CO ₃	μw^a	56	3	3
2	250 ppb	Na ₂ CO ₃	μw^a	94	41	60
3	2.5 ppm	Na ₂ CO ₃	μw^a	99	92	81
4	100 ppb	Na ₂ CO ₃	$conventional^{b}$	8	0	0
5	250 ppb	Na ₂ CO ₃	$conventional^{b}$	70	60	0
6	2.5 ppm	Na ₂ CO ₃	conventional ^b	81	70	64
7	100 ppb	K ₂ CO ₃	μw^a	5	4	2
8	250 ppb	K ₂ CO ₃	μw^a	57	14	36
9	2.5 ppm	K ₂ CO ₃	μw^a	89	81	79
10	2.5 ppm	K ₂ CO ₃	conventional ^b	95	50	75

^{*a*} Reactions run on 1 mmol scale. $Pd(NO_3)_2$ used as catalyst. Microwave irradiation of 150 W used. Temperature ramped from rt to 150 °C and held for 5 min. ^{*b*} Reactions run on 1 mmol scale. $Pd(OAc)_2$ used as catalyst. Reaction mixture placed into an oil bath preheated to 150 °C and held there for 7 min before being removed.

Arvela, R. K. et al. J. Org. Chem. 2005, 70, 161.

Combined Microwave and Ultrasound Irradiation (CMUI)

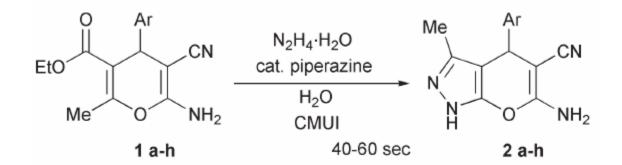
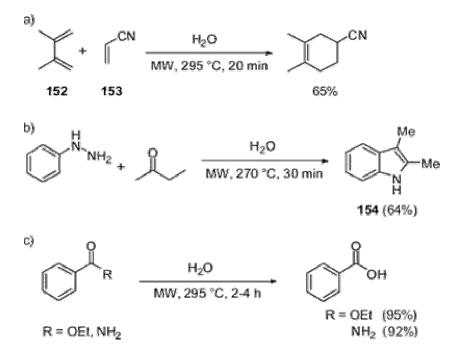


Fig. 1 Apparatus for microwave–ultrasound combined reactions: 1, transducer housing; 2, upper horn; 3, copper mesh screen; 4, rubber stopper; 5, adaptor; 6, port; 7, two-necked Pyrex flask; 8, detachable horn; 9, multimode cavity; 10, adaptor; 11, chock; 12, condenser.

> The rate-determining step is likely the mass transfer process at the interface of heterogeneous phases.

Peng, Y.; Song, G. *Green Chem.* **2001**, *3*, 302. Peng, Y.; Song, G.; Dou, R. *Green Chem.* **2006**, *8*, 573.

Scope for Heterocycle Generation



Product	Ar	Time/s	Yield $(\%)^a$	Mp/°C (obs.)	Mp/°C (lit.)
2a	C ₆ H ₅	50	90	245-246	$244 - 245^{16}$
2b	$4-CH_3O-C_6H_4$	55	92	212-213	210^{17}
2c	$4-OH-C_6H_4$	60	89	223-224	$225 - 226^{18}$
2d	$4-NO_2-C_6H_4$	40	92	251-252	$251 - 252^{16}$
2e	$4-Cl-C_6H_4$	40	93	234-235	235^{17}
2f	$2-Cl-C_6H_4$	40	92	245-246	$247 - 249^{19}$
2g	3-CH ₃ O-4-OH-C ₆ H ₃	60	92	233–234	$233 - 235^{16}$
2h	$3-Br-C_6H_4$	45	90	223-224	$223 - 224^{16}$

Peng, Y.; Song, G.; Dou, R. Green Chem. 2006, 8, 573.

Reactions in Near-Critical Water

fluid	ordinary water $(T < 150 \circ C, p < 4 bar)$	near-critical water (NCW) (T = 150-350 °C, p = 4-200 bar)	supercritical water (SCW) (T > 374 °C, p > 221 bar)
temp (°C)	25	250	400
pressure (bar)	1	50	250
density (g cm ⁻³)	1	0.8	0.17
dielectric constant, ϵ'	78.5	27.1	5.9
pK _W	14	11.2	19.4

Kremsner, J. M.; Kappe, C. O. Eur. J. Org. Chem. 2005, 3672.

Part IV: Summary

 \succ Reactions in water generally suffer from low solubility of either the reactants and reagents or the products. This could be solved by new technologies such as combined microwave and ultrasound irradiation.

 \succ Microwave-promoted reactions in water is a relative new area for developing novel green chemistry. Short reaction time, high energy efficiency, and convenience of handling are among its advantages. Development of large microwave reactors, however, is needed for the technology to be truly practical.

 \triangleright Near-critical and supercritical water have physical properties very different from ordinary water, and chemistry in such media is still largely unexplored due to the difficulty in accessing them.