Frontiers of Chemistry Series: Recent Uses of Silicon in Organic Synthesis

Tom Graham

Outline

- Introduction
 - Why Silicon?
 - The Source of Silicon
 - The Environmental Fate of Silicon
- Stoichimetric
 - Passive Si (i.e. protecting groups, silicon tethers, etc.) will not be discussed.
 - Active Si (i.e. change in the silicon coordination sphere occurs during the reaction)
 - Polyketide synthesis
 - Silicon-centered allylation reagents
 - Tandem Silylformylation-allylation (crotylation) / aldol-allylation (crotylation)
 - Silacyclopropanes
 - Silacyclopentane oxides
 - · Cross coupling reactions
 - Silacyclobutanes / Siloxanes
 - Hypervalent silanes
 - · Allylic alkylations
- Catalytic
 - Lewis base activated Lewis acids.
 - Other chiral, silicon-centered Lewis acids.

Why Silicon?

- Silicon is one of the most abundant elements in the earth's crust.
- Occurs as Si(IV) (SiO₂) but is readily reduced to Si (0).
- A variety of Si derivatives are available.
- Relatively safe, non-toxic and environmentally degradable.
- Hyper-valency allows access to the penta- and hexacoordinate complexes which are reminiscent of the transition metals.
- Chemoselective methods exist for the introduction and removal.

The Source of Silicon

(1)
$$SiO_2 + 2C \rightarrow Si + 2CO$$

(2)
$$CH_3OH + HCI \rightarrow CH_3CI + H_2O$$

Equation (3) is referred to as the Rochow Direct process:

- occurs at a pressure of 1 to 5 bars and the yield 85-90%
- Copper catalyst is used in a fluidized bed of silicon metal powder. The mechanism is not completely understood.
- > 500,000 tons / year

Source: Dow Corning reprint of Colas, A. *Chimie Nouvelle*, **1990**, *8*, 847.

The Environmental Fate of Silicon

- Low MW (<450) units are volatile and are degraded in the atmosphere.
- Half lives for the hydrolysis of high MW (450-450,000) PDMS (polydimethylsiloxane) polymers is 4-28 days depending on the soil type.
- "the data indicate organosilicons derived from dimethylsiloxanes do not pose a risk to the environment:"

5

Graiver, D.; Farminer, K. W.; Narayan, R. Journal of Polymers and the Environment 2003, 11, 129-136.

Double-Stereodifferentiating Crotylation Reactions

- Silane controls the absolute stereochemistry at the methyl stereocenter.
- Addition to the aldehyde can be Felkin or Cram chelate and controls the hydroxyl stereocenter.
- Open transition state.

6

Jain, N. F.; Takenaka, N.; Panek, J. S. J. Am. Chem. Soc. 1996, 118, 12475-12476.

Dihydropyrans from Chiral Crotylsilanes

Huang, H.; Panek, J. S. J. Am. Chem. Soc. 2000, 122, 9836-9837.

Silicon Centered Allylation Reagents: First Generation

- Six membered ring and acyclic silacyles did not give product.
- Reagent is prepared in large quantities in a single step from commercially available starting materials.
- · Reagent is a solid that is stable upon storage.
- Simplified work-up and purification (1N HCI / EtOAc) gives products in > 90% purity.
 - (1) no IPC-OH as occurs with boron centered IPC reagents.
 - (2) No metals.

entry	aldehy de	product	yield(%) ^b	ec(%) ^c
l ^d	PH	Ph	80	81
2 ^d	Ph	PH	59	78
3	Ph H	PH	84	88
4	Me H	Me OH	79 ^e	87
5		○ OH	70	87
6 ^d	4Bu H	OH /-Bu	80°	96
7	BnO	BnO	85	88
8	тво	тво	71	89

^a Reactions run with silane 3 (1.5 mmol) and aldehyde (1.0 mmol) in toluene (5 mL) at -10 °C for 2 h. ^b Isolated yield. ^c Determined by chiral HPLC analysis or by the Mosher ester method. ^d Reaction time = 24 h. ^e Due to product volatility, an alternative workup and purification was employed. See the Supporting Information.

Kinnaird, J. W. A.; Ng, P. Y.; Kubota, K.; Wang, X; Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 7920-7921.

Silicon Centered Allylation Reagents: Second Generation

- Yields and ee's for aliphatic aldehydes are good to excellent.
- Aromatic and conjugated aldehydes require longer reaction times and give lower yields.
- Ligand is expensive and stoichiometric but it can be recovered.

Entry ^[a]	R	Yield [%][6]	ee [%] ^{[4}
1	PhCH₂CH₂	90	98
2	(CH ₃) ₂ CHCH ₂	80 ^[d]	96
3	cHex €	93	96
4	PhCH,OCH,	67	97
5	PhCH ₂ OCH ₂ CH ₂	87	98
6 	tBuMe₂SiOCH₂	61	98

[a] Reactions run with silane 3 (1.0 equiv) and aldehyde (1.0 equiv) in CH_2Cl_2 at $-10\,^{\circ}C$ for 20 h. [b] Yield of isolated product. [c] Determined by chiral HPLC analysis or by the Mosher ester method. See the Supporting Information. [d] Because of product volatility, an alternative workup and purification was employed. See the Supporting Information.

Entry[=]	R	Yield [%] ^[6]	ee [%] ^[c]
1	Ph	69	98
2 ^[d]	p-MeOC₅H₄	62	
3 41:1	p-CF ₃ C ₆ H ₄	66	96 96
5(e)	(E)-PhCH=CH	75	96
	(E)-nPrCH=CH	7ነ ^በ	95

[a] Reactions run with silane 3 (1.0 equiv) and aldehyde (1.0 equiv) in CH_2Cl_2 at $-10\,^{\circ}C$ for 20 h. [b] Yield of isolated product. [c] Determined by chiral HPLC analysis or by the Mosher ester method. See the Supporting Information. [d] Reaction run for 60 h. [e] Reaction run at 8 °C for 72 h. [f] Because of product volatility, an alternative workup and purification was employed. See the Supporting Information.

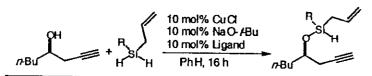
9

Kubota, K.; Leighton, J. L. *Angew. Chem. Int. Ed.* **2003**, *42*, 946-948.

Tandem Silylformylation - Allylsilylation: the key experiment

Zacuto, M. J.; O'Malley, S. J.; Leighton, J. L. J. Am. Chem. Soc. **2002**, *124*, 7890.

$$\begin{array}{c|c} Ph : Si \\ O \\ \hline \\ i \cdot Pr \\ \\ i \cdot Pr \\ \hline \\ i \cdot Pr \\ i \cdot Pr \\ \hline \\ i \cdot Pr \\ i \cdot Pr \\ \hline \\ i \cdot Pr \\ i \cdot Pr \\ \hline \\ i \cdot Pr \\$$


1:1 dr

O'Malley, S. J.; Leighton, J. L. *Angew. Chem. , Int. Ed.* **2001**, *40* , 2915

10

Access to Chiral Silanes

Table 1. Identification of Effective Chiral Phosphine Ligands

entry	R	ligand	сопу. (%)*	chr.
1	Ph	(R)-BINAP	2	58:42
2	Ph	(R)-(S)-JOSIPHOS	2	54:46
3	Ph	(R,R)-BDPP	2	58:42
4	$2,6-Me_2C_6H_3$	(R)-BINAP	47	61:39
5	$2,6-Me_2C_6H_3$	(R)-(S)-JOSIPHOS	84	59:41
6	$2,6-Me_2C_6H_3$	(R,R)-BDPP	99	47:53
7	t-Bu	(R)-BINAP	58	80:20
8	t-Bu	(R)- (S) -JOSIPHOS	23	77:23
9	t-Bu	(R,R)-BDPP	75	80:20

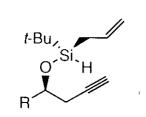
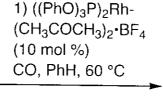
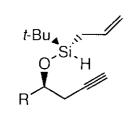

^a Conversion of alcohol measured by GC versus an internal standard. ^b Diastereomeric ratio measured by ¹H NMR or GC analysis.

Table 2. Catalytic Asymmetric Silane Alcoholysis


entry	R ¹	R²	ligand	yield (%)	dr ⁵
1 2 3 4 5 ^c 6 ^c 7 ^c 8 ^c	n-Pr n-Pr CH2CCH CH2CCH Ph Ph Ei Ei	CH ₂ CCH CH ₂ CCH <i>i-Pr</i> <i>i-Pr</i> CH ₂ CCH CH ₂ CCH Ph Ph	(R,R)-BDPP (S,S)-BDPP (R,R)-BDPP (S,S)-BDPP (R,R)-BDPP (S,S)-BDPP (R,R)-BDPP (S,S)-BDPP	75 89 91 93 83 82 99	80:20 20:80 82:18 36:64 90:10 12:88 78:22 12:88

^a Isolated yield of the mixture of diastereomers. ^b Diastereomeric ratio measured by ¹H NMR or GC analysis. ^c Reaction run at -15 °C for 16 h.

Chiral Silanes: access to 1,5-syn and 1,5-antistereoinduction



1 R = *n*-Pr, 80:20 *dr* **2** R = Ph, 90:10 *dr*

2) n-Bu₄N⁺F⁻, THF

3 R = *n*-Pr, 55 %; 78:22 *dr* **4** R = Ph, 38%; 90:10 *dr*

5 R = *n*-Pr, 80:20 *dr* **6** R = Ph, 88:12 *dr*

7 R = *n*-Pr, 44 %; 79:21 *dr* **8** R = Ph, 43%; 88:12*dr*

Schmidt, D. R.; O'Malley, S. J.; Leighton, J. L. J. Am. Chem. Soc. 2003, 125, 1190-1191.

12

Polyketides: The Dolabelides

13

Schmidt, D. R.; Park, P. K.; Leighton, J. L Org. Lett. 2003, 5, 3535-3537.

Dolabelides: Tandem Silylformylation - Crotylation

14

Schmidt, D. R.; Park, P. K.; Leighton, J. L Org. Lett. 2003, 5, 3535-3537.

Dolabelides: Fragment Elaboration

Tandem Aldol-Allylation(Crotylation)

16
Wang, X.; Meng, Q.; Nation, A. J.; Leighton, J. L. *J. Am. Chem. Soc.* **2002**, *124*, 10672-10673.
Tom Graham @ Wipf Group 16 April 10, 2004

Silacyclopropanes

- Cu salts insert into the more substituted C-Si bond (unsaturated aldehydes).
- Zn salts insert into the <u>less</u> substituted C-Si bond.
- · Generally not regarded as a useful alternative to other existing technologies.
- Refer to previous "Current Literature" for more details.

Cirakovic, J.; Driver, T. G.; Woerpel, K. A. *J. Org. Chem.* **2004**, ASAP (DOI: jo0355505); Driver, T. G.; Woerpel, K. A. *J. Am. Chem. Soc.* **2003**, *125*, 10659-10663.

Silacyclopentene Oxides: A Strategy for Polyol Synthesis

Liu, D.; Kozmin, S. A. Angew. Chem. Int. Ed. 2001, 40, 4757-4759

Silacyclopentene Oxides

Preparative scale

Richter, W. J. *Synthesis* **1982**, 1102. Mignani, S. et. al. *Syn. Commun.* **1995**, *25*, 3855. Manuel, G. et. al. *J. Organomet. Chem*, **1993**, *447*, 167.

19

Stereoselective Rearrangements of Silacyclopentene Oxides

- Silicon atom is expected to be beneficial because:
 - α-Si-carbanion stabilization
 - silicon substituents can be varied to maximize selectivity and reaction rate.
- A variety of chiral diamine and amino-alcohol ligands were tested with diphenyl, methyl/napthyl, and diisopropyl substituted silacyclopentene oxides.
- Bicyclic amide (shown above) (150 mol %) and diphenyl silane gave the best ee (95%).

Liu, D.; Kozmin, S. A. Angew. Chem. Int. Ed. 2001, 40, 4757-4759

20

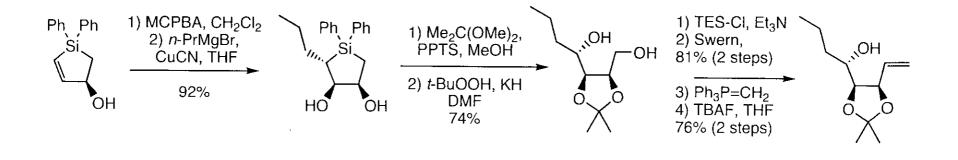
Epoxidation / Cuprate Addition Sequence

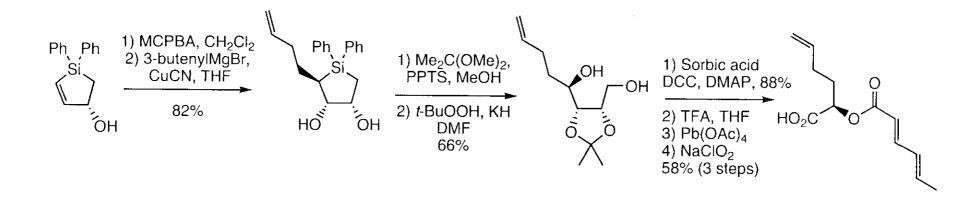
Entry	R	11	Yield [%] ^[6]	d.r.
1	~~,	(-)-11a	91[6]	> 97:3
2	~~;	(-)-11 a	72 ^[d]	> 97:3
3	\downarrow	(−)-11 b	. 78 ^[c]	> 97:3
4	>	(-)-11 c	92(-)	> 97:3
5	~1	()-11 d	87 ^[c]	> 97:3
6	Ph. pt	(−)-11 e	9211	> 97:3
7	Ph /	()-11 f	86 ^(c)	> 97:3
8	TMS /	(−)-11 g	91 ^[d]	>97:3
9	H. F (LIAIH4)	(−)-11 f	64 ^[e]	>97:3

[a] For detailed experimental procedures and compound characterization, see Supporting Information. [b] Refers to the yield of spectroscopically pure product isolated after silica gel chromatography. [c] Organocuprate was generated from the corresponding Grignard reagent. [d] Organocuprate was generated from the corresponding organolithium reagent. [e] Reduction was carried out on the methoxymethyl(MOM)-protected alcohol (-)-10 to prevent formation of the meso product.

Oxidative Cleavage of the Cyclic Silanes

Entry	Silane	R	R'	12	Yield [%][b]
1	(-)-11 a	~~,	Н	(−)·12a	78
2	(+)-11 b	1,	Н	(-)-12b	76
3	(+)-11 c	>	Н	(-)-12 c	79
4	(-)- 11 f	Ph	Н	(-)-12 d	70
5	(-)-11 h	K.	MOM	(-)-12 e	74


[a] For detailed experimental procedures and compound characterization, see Supporting Information. [b] Refers to the yield of spectroscopically pure product isolated after silica gel chromatography.


(-)-Pinolidoxin: Retrosynthesis

HO,
$$7$$
 Si Ph R Ph

Liu, D. Kozmin, S. A. *Org. Lett.* **2002**, *4*, 3005-3007. Isolation and biological activity: Evidente, A. et. al. *Phytochemistry* **1993**, *34*, 999.

(-)-Pinolidoxin: Fragment Synthesis

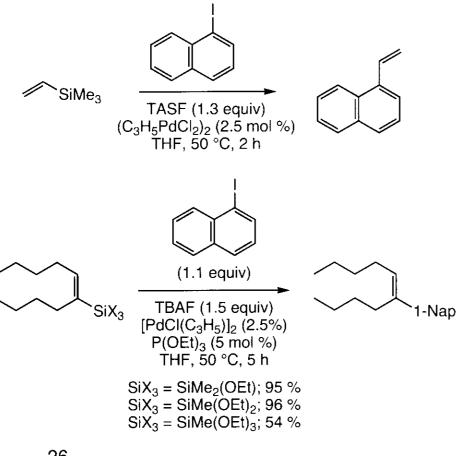
24

Liu, D. Kozmin, S. A. Org. Lett. 2002, 4, 3005-3007.

(-)-Pinolidoxin: Fragment Coupling and Macrocyclization

 TFA, THF, H₂O, 81%
 Grubbs II Catalyst, 62% trans:cis = 67:33

with the acetonide in place cis:trans = >95:5


HO,,,

(-)-Pinolidoxin

25

Liu, D. Kozmin, S. A. Org. Lett. 2002, 4, 3005-3007.

Cross Coupling of Organosilanes via a Pentacoordinate Intermediate

- 23 examples given with yields 67 100%.
- · vinyl, allylic and alkynyl silanes were used.
- HMPA and P(OEt)₃ added in some cases.

Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1988, 53, 918-920.

- 13 examples given with yields 45 96%.
- alkenyltrialkoxysilanes more reactive than alkenyl trifluorosilanes (inert).
- alkenyl bromides also coupled with longer reaction times.

Tamao, K.; Kobayashi, K.; Ito, Y. Tetrahedron Lett. 1989, 30, 6051-6054.

26

Cross-Coupling Reactions of Silacyclobutanes?

Pd (dba)₂ (5 mol %)
$$R-C_5H_9$$

$$R-I$$

$$R-I$$

$$R-C_5H_9$$

$$R-C_5H_9$$

$$R-C_5H_9$$

$$R-C_5H_9$$

- Aryl iodides (electron poor and electron rich) generally couple in less than 1 h with yields > 90%.
- Vinyl iodides usually couple in less than 2 h with yields 65-95%.
- Premixing the silacyclobutane and TBAF was required to limit formation of reduction byproducts.
- A significant exotherm was observed when silacyclobutane and TBAF were mixed.

Denmark, S. E.; Choi, J. Y. J. Am. Chem. Soc. 1999, 121, 5821-5822.

The Fate of the Silacyclobutane

$$n-C_5H_{11}$$
Si Me
$$\frac{1) \text{ Bu}_4\text{NF (1.0 equiv)}}{\text{THF / rt}}$$

$$2) \text{ separation on SiO}_2$$

$$n-C_5H_{11}$$

$$1) \text{ Bu}_4\text{NF (1.0 equiv)}$$

$$1) \text{ Me}_4$$

$$1) \text{ Me}_4$$

$$1) \text{ Me}_5$$

$$1) \text{ Me}_7$$

$$n-C_5H_{11}$$

Me Me

 $N-C_5H_{11}$
 $N-C_5H_{11}$
 $N-C_5H_{11}$
 $N-C_5H_{11}$
 $N-C_5H_{11}$
 $N-C_5H_{11}$
 $N-C_5H_{11}$
 $N-C_5H_{11}$
 $N-C_5H_{11}$

2: X = OH

6: $X = OSi(Me)_2C_7H_{13}$

7: X = F

			yield, % (time)	
	no activator	TBAF	TBAF ^b	TBAOH ^b
2	NR	82 (1 h)	79 (10 min)	75 (3 h)
6	NR	82 (1 h)	82 (10 min)	78 (3h)
7	NR	79 (1 h)	78 (10 min)	22 (24 h)

Denmark, S. E.; Wehrli, D.; Choi, J. Y. Org. Lett. 2000, 2, 2491-2494.

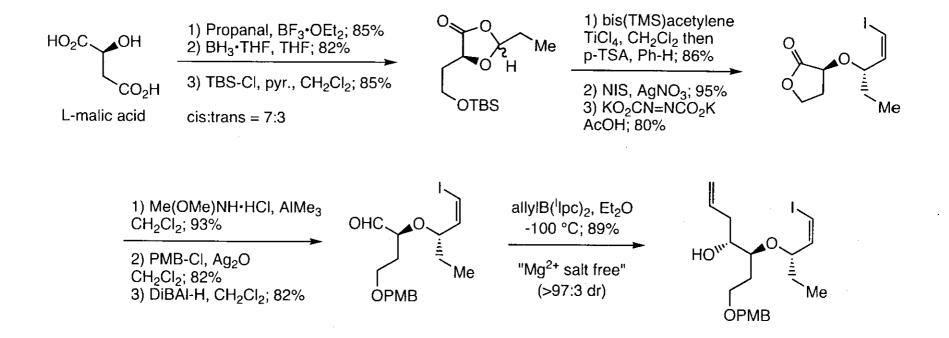
Denmark, S. E.; Sweis, R. F.; Wehrli, D. J. Am. Chem. Soc. ASAP, 2004.

Fluoride Promoted Cross Coupling

$$\begin{array}{c} \text{Me}, \text{Me} & \text{Me} & \text{Me} \\ \text{Ne}, \text{Si}, \text{OSi}, \text{Me} \\ \text{R} & \text{Si}, \text{OH} \end{array} \\ \begin{array}{c} \text{Me}, \text{Me} & \text{Me} \\ \text{Ne}, \text{Me} & \text{Ne} \\ \text{H}_2\text{O} \\ \text{R} & \text{Si}, \text{O-H-F} \end{array} \\ \begin{array}{c} \text{Me}, \text{Me} & \text{Me} \\ \text{H}_2\text{O} \\ \text{R} & \text{Ne}, \text{Me} \\ \text{R} & \text{Ne}, \text{Ne} \\ \text{$$

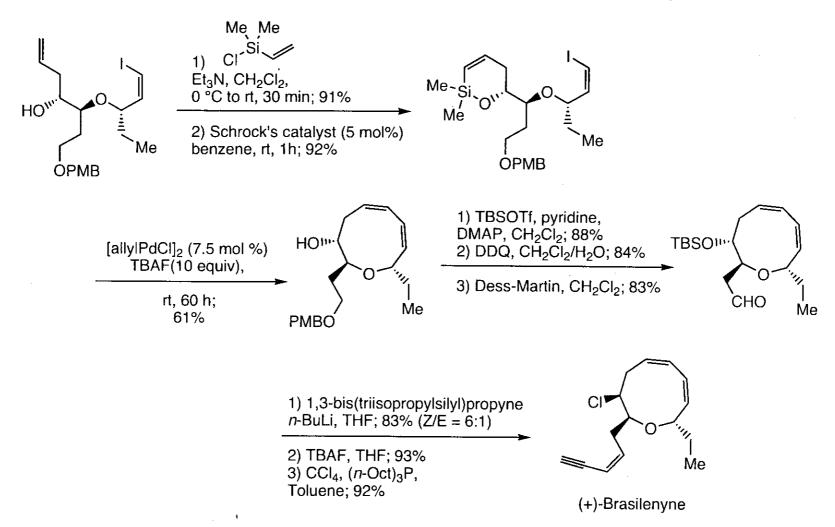
- The rate is second order in silanol and first order in disiloxane.
- The transmetallation is the turn-over limiting step.
- The rate dependence on [TBAF] is first order for low [TBAF] and inverse first order for high [TBAF].

Denmark, S. E.; Sweis, R. F. J. Am. Chem. Soc. ASAP, 2004.


29

(+)-Brasilenyne: Retrosynthesis

30


Denmark, S. E.; Yang, S. J. Am. Chem. Soc. 2002, 124, 15196-15197.

(+)-Brasilenyne: Synthesis of the Key Intermediate

Denmark, S. E.; Yang, S. J. Am. Chem. Soc. 2002, 124, 15196-15197.

(+)-Brasilenyne: Key Cyclization and Completion

32

Denmark, S. E.; Yang, S. J. Am. Chem. Soc. 2002, 124, 15196-15197.

32

Fluoride-Free Cross Coupling of Organosilanes

- When compared to TBAF, other activators may be less expensive and provide for easier purifications.
- · Hydride reagents lead to reduction of the aryl iodide.
- The use of K+Ot-Bu gave less reduction, but resulted in extended reaction times (3 h).
- KOTMS (2.0 equiv) gave good yields and rates.
- Recent results suggest that a pentavalent Si is <u>not</u> involved as a key intermediate prior to transmetallation.

Denmark, S. E.; Sweis, R. F. J. Am. Chem. Soc. 2001, 123, 6439-6440.

Denmark, S. E.; Sweis, R. F. J. Am. Chem. Soc. ASAP, 2004.

Fluoride-Free Cross Coupling of Organosilanes

entry	silane	R ¹	R ²	aryl	time, h	product	yield, %	ratio, E/Z ^b
1	(E)-1	n-C ₅ H ₁₁	Н	l-naphthyl	2	(E)-2a	93 ^c	97.9/2.1
2	(Z)-1	Н	$n-C_5H_{11}$	1-naphthyl	9	(Z)-2a	88 ^c	2.8/97.2
3	(E)-1	$n-C_5H_{11}$	Н	phenyl	0.5	(E)-2b	91°	99.3/0.7
4	(Z)-1	Н	n-C₅H ₁₁	phenyl	7.5	(Z)-2b	86°	1.8/98.2
5	(E)-1	$n-C_5H_{11}$	H	4-(CH₃CO)C6H4	9	(E)-2c	82°	98.8/1.2
6	(Z)-1	Н	$n-C_5H_{11}$	4-(CH ₃ CO)C ₆ H ₄	13	(Z)-2c	83°	2.9/97.1
7	(E)-1	$n-C_5H_{11}$	H	4-(CH ₃ O)C ₆ H ₄	1	(E)-2d	88°	99.3/0.7 ^d
8	(Z)-1	Н	$n-C_5H_{11}$	4-(CH ₃ O)C ₆ H ₄	9.5	(Z)-2d	91¢	1.1/98.9°
9	(E)-1	$n-C_5H_{11}$	Н	4-(NO ₂)Ć ₆ H ₄	0.25	(E)-2e	951	98.5/1.5
10	(Z)-1	Н	n-C ₅ H ₁₁	4-(NO ₂)C ₆ H ₄	0.25	(Z)-2e	85 ^f	3.8/96.2
11	(E)-1	$n-C_5H_{11}$	н	4-(EtO ₂ C)C ₆ H ₄	0.25	(E)-2f	85 ^f	99.8/0.2
12	(Z)-1	н	$n-C_5H_{11}$	4-(EtO ₂ C)C ₆ H ₄	0.25	(Z)-2f	83⁄	0.7/99.3
13	(E)-1	n-C ₅ H ₁₁	Н	2-(TBSOCH ₂)C ₆ H ₄	9	(E)-2g	80 _{\(\frac{2}{3}\)}	99.5/0.5
14	(Z)-1	Н	n-C ₅ H ₁₁	2-(TBSOCH ₂)C ₆ H ₄	14.5	(Z)-2g	76 ^f	2.0/98.0¢

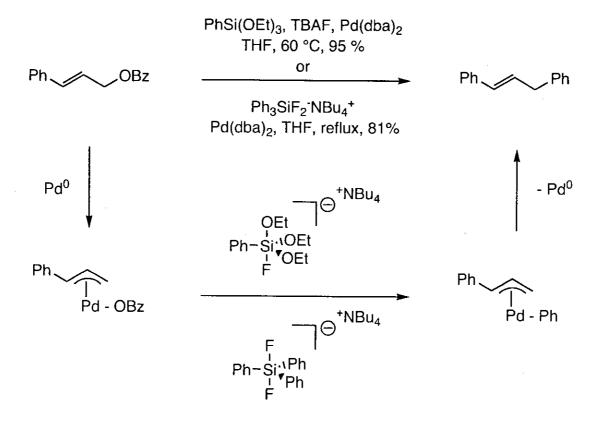
^a Reactions employed 1.1 equiv of 1. ^b Determined by GC analysis. ^c Yield of chromatographed, distilled products. ^d Accompanied by 3.8% cine-rearranged product. ^e Accompanied by 6.2% cine-rearranged product. ^f Yield of analytically pure material. ^g at 50 °C.

Denmark, S. E.; Sweis, R. F. J. Am. Chem. Soc. 2001, 123, 6439-6440.

Access to Trisubstituted Olefins

Me —
$$i$$
-Pr₂SiCl(H) i -Pr i -Pr

entry	R	time, h/temperature, °C	product	yield, ^b %
1	Н	6.66/rt	3a	88
2	2-Me	6.83/rt	3b	74
3	2-MeO	10.0/35	3c	74
4	2-NO ₂	23/35	3d	56
5	3-HOCH ₂	6.0/rt	3е	81
6	4-CH _{3O}	6.50/rt	3f	72
7	4-MeCO	6.0/rt	3g	70
8	4-NO ₂	6.25/rt	3h	67¢
9	4-CN	46/45	3i	70
10	4-COOEt	16/45	3 <u>j</u>	86


^a Reaction conditions: 1.1 equiv of 2a, 2.0 equiv of TBAF, and 5 mol % of Pd(dba)₂ were employed for 1.0 equiv of iodide in THF at rt. The iodide was added in portions as specified (see Supporting Information). ^b Yields of analytically pure materials. ^c Isomeric ratio 95.2/4.8 by capillary GC analysis.

Denmark, S. E.; Pan, W. *Org. Lett.* **2001**, *3*, 61-64.
Anti-intramolecular hydrosilylation with Ru:
Denmark, S. E.; Pan, W. *Org. Lett.* **2002**, *4*, 4163-4166.

Stilbene Derivatives from Sequential Heck / Cross Coupling Reactions

Itami, K; Nokami, T.; Yoshida, J. *J. Am. Chem. Soc.* **2001**, *123*, 5600-5601; Itami, K; Nokami, T.; Ishimura, Y.; Mitsudo, K.; Kamei, T.; Yoshida, J. *J. Am. Chem. Soc.* **2001**, *123*, 11577-11585.

Allylic Alkylations

Correia, R.; DeShong, P. J. Org. Chem. 2001, 66, 7159-7165.

Allylic Alkylations

Table 1. Palladium-Catalyzed Arylation of Cyclic Allylic Benzoates

	- Tunddidiii	Catalyzed Arylation of	Cyclic Allylic Ben	zoates			ΩMe .	OMe OMe	
Entry	Allylic Benzoate	Siloxane	Product	Yield (%)	7	3	SI(OEI)3		9*
1	OBz	Me—Si(OEt) ₃		87	•	•	21	22	
2	3 3	Me Si/OF	10 Me	. }	8	3	CI	24 O _G	87
_	v	Si(OEt) ₃	12 Me	86	9	3	Me ₂ N—Si(OEt) ₃		84
3	3	Si(OMe) ₃	Me 14	77			25	26 NMe ₂	
4	3	MeO-Si(OEI)3		88	10	3	H ₂ N-Si(OEt) ₃	28 NH ₂	34 ^b
		15 MeQ	16 OMe			χ		Y	
5	3	Si(OEt) ₃	OMe 18	88	11	OBz	9	(±)-29 Me	84
6	3	Si(OEt) ₃	0	87	12	(+)- 5	15		78
		19	20			• • •	•	(±)-30 OMe	,,

38

Correia, R.; DeShong, P. J. Org. Chem. 2001, 66, 7159-7165.

Catalytic Silanes: Lewis Base Activation of Lewis Acids

$$\begin{array}{c} \text{SiCl}_4 \\ \text{"A Poor Lewis Acid"} \end{array} + \begin{array}{c} \text{Me} \\ \text{N, N, Me} \\ \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{Cl} \\ \text{Cl} \\ \text{N, N, Me} \\ \text{Cl} \\ \text{Cl} \\ \text{N, N, Me} \end{array} \end{array} \\ \begin{array}{c} \text{Cl} \\ \text{Cl} \\ \text{N, N, Me} \\ \text{Cl} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{Cl} \\ \text{Cl} \\ \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{Cl} \\ \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{Cl} \\ \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{Cl} \\ \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{Cl} \\ \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{Cl} \\ \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N, N, Me} \\ \text{N, N, Me} \end{array} \\ \begin{array}{c} \text{N,$$

"A Good Lewis Acid"

- SiCl₄ is a readily available, weak Lewis acid.
- Upon binding the bis-phosphoramide ligand, a change in the coordination sphere occurs ultimately leading to ionization of the complex which becomes a good Lewis acid.
- · With many Lewis acids, there is a loss in Lewis acidity upon ligand binding.

Denmark, S. E.; Heemstra, Jr., J. R. Org. Lett. 2003, 5, 2303-2306;

Denmark, S. E.; Stavenger, R. A. Acc. Chem. Res. 2000, 33, 432-440.

Methyl Ketone Enolates in Aldol Additions

- Aryl and unsaturated aldehydes give good yields and ee's.
- α-Branching attenuated the réactivity.
- Aliphatic aldehydes were unreactive.

entry	R	product	time, h	yield, ^h %	er ^c
1	(E)-PhCH=CH	(+)-13	4	97.5°	99.5/0.5
2	(E)-Pl ₃ CH=C(CH ₃) ^{-/}	(+)-14	24	54 _e	78.0/22.0
3	1-naphthyl	(+)-15	10	95°	96.0/4.0
4	2-naphthyl	(+)-16	4	92	99.5/0.5
5	4-CH₃OC ₆ H₁	(+)-17	4	97.5	99.5/0.5
6	4-CF ₃ C ₆ H ₄	(+)-18	4	96	99.5/0.5
7	2-furyt	(+)-19	6	88	95.0/5.0
8	2-thiophenyl	(+)-20	8	79	99.0/10.0
9	PhCH ₂ CH ₂		24	nr	nd

"All reactions employed 1.5 equiv of SiCl₄, 1.2 equiv of enolate, 10 mol % *i*-Pr₂NEt, and 5 mol % (R,R)-1 at 0.5 M in CH_2Cl_2 at -72 °C for 3 h. "Yield of analytically pure material." Determined by CSP-SFC. "Reaction employed 10 mol % (R,R)-1. "Chromatographically homogeneous material.

Another Lewis Acid: N-trimethylsilyl-bis(trifluoromethanesulfonyl)imide

The Diels-Alder Reaction Catalyzed by TMSNTf₂

Entry	Diene	addition T°	Conditions	Catalyst	Yield (%)*	Endo : Exob	
Α .		oc	0°C - 20 min	TMSOTf TMSNTf2	< 5 83	13.3 : 1 24 : 1	
В		0°C	0°C - 60 min	TMSOTf TMSNTf ₂	0 92	49:1	
С	'BDMSO	0°C	RT - 60 min	TMSOTf TMSNTf ₂	0 76	24 : 1	• Enhand when co
D	TMSO	-50° C	RT - 60 min	TMSOTf TMSNTf ₂	0 91	≥ 99 : 1	 One excarbonyl yield) that with TMS
E	TMSO Me	0°C	0°C - 90 min	TMSOTf TMSNTf ₂	<5 <5 74	1:2 1:2 2:1	
							M Tetrahedron Lett.

⁽a) total yield of pure adducts; (b) Endo/Exo ratios were determined by gas chromatography or ¹H NMR on the crude mixture.

Mathieu, B.; Ghosez, L. *Tetrahedron Lett.* **1997**, *38*, 5497-5500.

Enhanced Lewis acidity when compared to TMSOTf

One example of a carbonyl-ene reaction (44% yield) that did not proceed with TMSOTf

How good is TMS-NTf₂?

Table 3. Effect of Lewis and Brönsted acids on the chemical shifts of H^3 protons of α,β -unsaturated carbonyl compounds

LA/HA	$\Delta\delta\mathrm{H}^3$					
	Methylcrotonate	Crotonaldehyde	Cyclohexanone			
TMSNTf ₂	0.89	1.74	1.43			
TMSOTf	~0	~0	~0			
HNTf ₂	0.11	0.46	0.2			
HOTF	0.46	1.28	1.18			

Chiral Silicon Lewis Acids

Mathieu, B.; de Fays, L.; Ghosez, L. *Tetrahedron Lett.* **2000**, *41*, 9561-9564

Chiral Silicon Lewis Acids

Entry	Catalyst	R	Conditions	endo:exo ^b	Yield ^c (%)	cc endob (%)	
1	3a	Н	Toluene, -78°C, 1.5 h	. 99:1	83	7 (28)	-
2	3b	Н	Toluene, -45°C, 1.5 ha	99:1	98	43 (28)	•
3	3b	H	Toluene, -78° C, 1.5 h	99:1	83	54 (2S)	
4	3 b	H	Toluene, -100°C, 1.5 ha	99:1	94	54 (2S)	Highest ee ever
5			Toluened, -78°C, 8 h"	_	NR	•	-
6			97:3	93	24 (2S)	reported for a Diels-	
7	3c		Toluene, -78°C, 1.5 h	99:1	79	26 (2S)	Alder reaction
8	3d	Н	Toluene, -78°C, 1.5 h	99:1	80	13 (25)	catalyzed by a chiral silicon Lewis acid.

[&]quot;Reactions were run in the presence of 10 mol% of 2,6-bis(t-butyl)-4-methylpyridine.

Mathieu, B.; de Fays, L.; Ghosez, L. Tetrahedron Lett. 2000, 41, 9561-9564

b ce and endo:exo ratio obtained on a chirasil DEX-CB GC column.

^e Yield of isolated compound.

^d Ether, propiononitrile and CH₂Cl₂ were also tested without success.

Does the -NTf₂ Ligand Dissociate? Mukaiyama Aldol

- The results suggest that the NTf₂ ligand remains bonded to the silicon.
- +SiR₃ induced cascade process was not ruled out.

Does the -NTf₂ Ligand Dissociate? Sakurai-Hosomi allylation

TBDMS OTMS OTBDMS

PhCHO +
$$\frac{TMS-NTf_2 (1 \text{ equiv})}{CH_2Cl_2 / Et_2O (50 \text{ ml})}$$
 + Ph + Ph + Ph 2

1.0 mmol 1.2 mmol 1.2 mmol 2

>99% yield, 1:2 = 3:97

47

Ishihara, K.; Hiraiwa, Y.; Yamamoto, H. Chem. Commun. 2002, 1564-1565.

Controlling the Silicon Coordination Sphere

48

Wagler, J.; Böhme, U.; Roewer, G. Angew. Chem. Int. Ed. 2002, 41, 1732-1734.

Conclusions: Stoichiometric Silicon

Chiral crotylsilanes

- Proven technology that has been used for numerous polyketide constructions.
- Synthesis of the chiral silane reagent requires several steps.

Silicon centered allylation reagents

- Can be made in one step from commercially available starting materials
- Solids that are stable to storage.
- Provide products of high purity and the ligand can be recovered.

Tandem sequences

- · Efficient construction of polyketide sequences.
- · Requires further development to address reaction scope and/or selectivities.

Silacycles

- Silylene transfer reagents offer some promise for the use of silacyclopropanes.
- The use of silacyclopentane oxide has been demonstrated as an expedient route to highly oxygenated sequences.

Cross-coupling

- Recent advances in the understanding of silicon cross coupling reactions offer a very promising alternative to tin (Stille) and boron (Suzuki) reagents.
- Currently, flouride or base (KOTMS) are required for activation.

Conclusions: Catalytic Silicon

- Efforts have mainly focused on using the silicon as a Lewis acid.
- Chiral phosphoramides
 - The most advanced technology.
 - In situ generation of the catalyst has recently been demonstrated.
 - Significant information concerning the mechanism has been published.
- Other ligands have been explored but have not been demonstrated to be of significant use in organic synthesis.