
New Chemistry with Old Functional Groups: On the Reaction of Isonitriles with Carboxylic Acids-A Route to Various Amide Types

Li, X.; Danishefsky, S. J. J. Am. Chem. Soc. 2008, 130, 5446.

Zhiyong Wang
Wipf Group
Current Literature Presentation
April 26th, 2008

Isocyanide-An Old and Versatile Functional Group

Domling, A.; Ugi, I. Angew. Chem. Int. Ed. 2000, 39, 3168.

Properties of Isocyanides

- Most commercially available simple alkyl isocyanides carry a repulsive odor which is reminiscent of artichokes and phosphorus at the same time.
- Long term inhalation of volatile isocyanides might cause the sensory perception of the smell of hay and increase the intensity of dreams at night.
- Structurally more complex isocyanides are generally solid, odorless and of low toxicity.

LD₅₀ < 10mgkg⁻¹ for mouse

Gautier, A. Ann. Chim. (Paris) 1869, 17, 618.

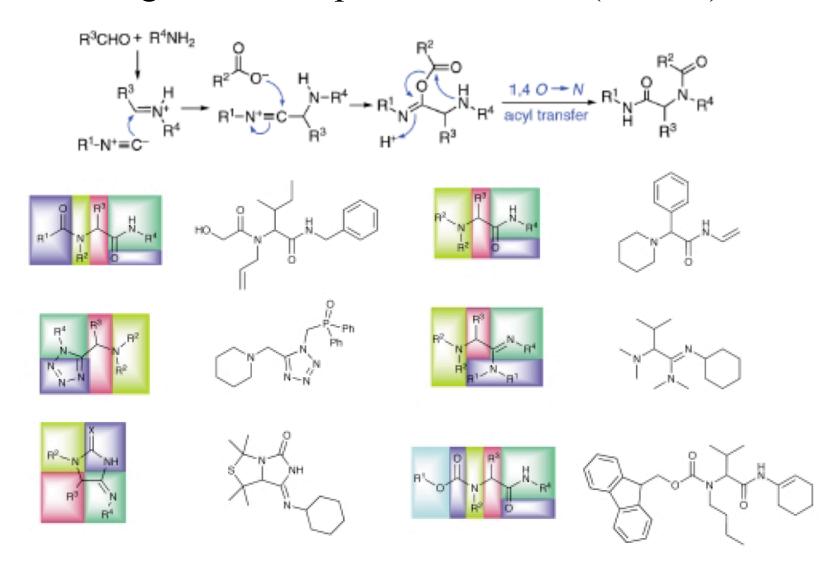
Preparation of Isonitriles

Important preparative isocyanide syntheses with examples.

Method	Example ^[n]
Lieke, 1859	/ + AgCN
Meyer, 1866	RO OR + AgCN - RO OR OR
Gautier, 1867	the silver cyanide method, often referred to as the Gautier method, was first described by Lieke and Meyer.
Hoffmann, 1867	PhNH ₂ + 3 KOH + CHCl ₃ PhNC + 3 KCl + H ₂ O
Hoffmann, 1870	NCO - H> NC
Ugi, 1958	N CHO + COCI ₂ + Base NC + Base · HCI + H ₂ O
Ugi, Weber, Gockel, 1972	improved Hoffmann carbylamine method, in CH2Cl2/CHCl9/H2O with phase transfer catalyst
Appel, 1972	NHCHO + CCl ₄ + PPh ₃ + NEt ₃ - Et ₃ N·HCl - Ph ₃ PO - CHCl ₃
Schöllkopf, 1971	MeNC + BuLi — [Li, NC] — BnCl NC
Barton, 1988	1. HCOOMe imidiazole 2. DABCO, COCl ₂
Gassman, 1982	O 1. TMSCN, Znl ₂ OH NC
Baldwin, 1990	OHCHN STOI (CF3SO2)2O, iPr2NH OCN STOI
Kitano, 1998	OH TMSCN, ZnBr ₂

[a] DABCO = 1,4-diazabicyclo[2.2.2]octane, TMS = Me₃Si, Tol = tolyl.

Chemical Reactivity of Isocyanide


- \triangleright α -Acidity: heterocycles formation
- \triangleright α -Addition: multicomponent reactions (MCRs)
- ➤ Radical formation

Kobayashi, Y.; Fukuyama, T. J. Heterocycl. Chem. 1998, 35, 1043.

Passerini Reaction

Passerini, M. *Gazz. Chim. Ital.* **1921**, *51*, 181. Banfi, L.; Riva, R. *Org. React.* **2005**, *65*, 1.

Ugi Four-Component Reaction (U-4CR)

Ugi, I.; Meyr, R.; Fetzer, U.; Steinbrückner, C. *Angew. Chem.* **1959**, *71*, 386. Dömling, A.; Ugi, I. *Angew. Chem., Int. Ed.* **2000**, *39*, 3168.

Current Paper: Do Ordinary Carboxylic Acids React with Isonitriles?

Scheme 1a: Passerini reaction.

$$R^{3}CHO + R^{4}NH_{2}$$
 $R^{3} \longrightarrow H$
 $R^{2} \longrightarrow H$
 $R^{1}-N^{+}=C$
 $R^{3} \longrightarrow H$
 $R^{4} \longrightarrow H^{4}$
 $R^{1}-N^{+}=C$

Scheme 1b: Ugi four-component coupling reaction.

Li, X.; Danishefsky, S. J. J. Am. Chem. Soc. 2008, 130, 5446.

Exploration

Application to Glycopeptide Formation

^a Key: (a) CHCl₃, 150 °C (microwave), 30-45 min; (b) (1) Pd/C, H₂, Et₃N, EtOAc; (2) HC(O)OC(O)CH₃; (c) (1) (NH₄)₂MoS₄, MeCN/EtOH; (2) HC(O)OC(O)CH₃, EtOAc, 53%; (d) triphosgene, Et₃N, CH₂Cl₂, 0 °C to rt, 75−90%.

4/28/2008

Further Elaboration of the N-Formyl Group

^a Key: (a) NaOMe, MeOH, 0 °C; (b) NaBH₄, MeOH, 0 °C; (c) TFA, Et₃SiH, CH₂Cl₂; (d) TFA, allyltrimethylsilane, CH₂Cl₂; (e) CHCl₃, 150 °C (microwave), 30 min; (f) LiN(TMS)₂, THF; (g) TFA, CH₂Cl₂.

Summary

- ➤ Careful examination of reaction mechanisms could lead to novel discoveries from old chemical reactions.
- Common isonitriles do react with carboxylic acids under forcing conditions to give *N*-formyl amides. The formyl group could serve as a handle to construct various tertiary amides, which might otherwise be difficult to synthesize.