A Novel Tumor-Activated Prodrug Strategy Targeting Ferrous Iron Is Effective in Multiple Preclinical Cancer Models

Tanja Krainz
Current Literature Seminar
December 24, 2016
Iron and Cancer

Iron enables the function of
- Vital iron and haem-containing enzymes involved in respiratory complexes (mitochondrial enzymes)
- Enzymes involved in DNA synthesis and cell cycle
- Detoxifying enzymes such as peroxidase and catalase

- Iron is essential for cell replication, metabolism and growth
Iron (Uptake and Efflux) in Normal vs. Cancer Cells

Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + HO^- + HO^-

Fe^{3+} + H_2O_2 \rightarrow Fe^{2+} + HOO^- + H^+
Fe(II)-Dependent Drug Delivery

- Labile Fe(II) promotes Fenton chemistry
- Fenton reaction of a peroxidic prodrug coupled to release drug payloads

- Drug species can be conjugated via an amine or alcohol function, potentially allowing the intrinsic bioactivity and/or toxicity of the drug species to be blocked before Fe(II) dependent release at the desired side of action.
Synthesis of Microtubule Inhibitor

\[\text{LDA, TMSCHN}_2, \text{THF}, -78 ^\circ \text{C}, 56\% \]

\[\text{EtMgCl, THF} \]
\[\text{N}_3, 34\% \]

\[\text{H}_2, \text{Pd/C}, \text{MeOH}, 98\% \]

\[\text{COC}_2, 70 ^\circ \text{C} \]
\[\text{toluene, sealed tube, 6 - 16 h} \]

\[\text{O}_2, \text{CCl}_4, 25 ^\circ \text{C}, 2 \text{ h} \]

\[\text{TBAF, THF, 0 ^\circ \text{C}, rt, 24 \text{ h}} \]

\[\text{KOH, Me}_2\text{SiO, rt} \]

\[\text{81-91\%} \]

\[\text{df = 90:10} \]

\[\text{13, R = H} \]

\[\text{7, R = Me} \]

\[\text{9, (X=O) 59\% over 2 steps} \]

\[\text{10, (X=O) 20\% over 2 steps} \]
Design, Synthesis and Validation in Cell Culture of a Microtubule Toxin

- Drug release is both efficient and peroxide dependent
Cytotoxicity in a Panel of Cancer Cell Lines

“E_{50} ratio” → Normalizing the activity of conjugate 2 to that of its cytotoxic payload 1 to compare efficiency of payload release from 2 across different cell lines
In Vivo PK/PD Studies of Duocarmycin Conjugate

Duocarmycin isolated from Streptomyces bacteria. Known for extreme cytotoxicity. Extremely potent antitumor antibiotics

<table>
<thead>
<tr>
<th></th>
<th>T1/2 [h]</th>
<th>Clearance [mL min⁻¹ kg⁻¹]</th>
<th>Volume of Distribution [L/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3.8</td>
<td>20</td>
<td>6.7</td>
</tr>
<tr>
<td>6</td>
<td>20.4</td>
<td>31.3</td>
<td>55</td>
</tr>
</tbody>
</table>

b. **PC-3**

![Graph showing the effect of different compounds on PC-3 cell viability](image)

- **MDA-MB-231**

![Graph showing the effect of different compounds on MDA-MB-231 cell viability](image)
PK Profile and *In Vivo* tolerability

Plasma concentrations

![Graph showing plasma concentrations over time](image)

Mouse liver samples

![Image of mouse liver samples](image)
Xenograft Studies

MDA-MB-231 xenograft bearing female SCID-beige mice

IP administration on Q4d schedule (3 total doses)
Conclusion

- Trioxolane-mediated Fe(II)-dependent drug delivery acts as a new approach for cell/tissue selective drug targeting

- Two prototypical trioxolane drug conjugates bearing cytotoxins with distinct mechanisms of cellular toxicity

- Confirmed that intrinsic cytotoxicity of these agents can be decreased in conjugated forms (and yet fully realized following cell or tumor selective release at their intended side of action)
<table>
<thead>
<tr>
<th>1</th>
<th>15</th>
<th>15</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>P</td>
<td>P</td>
<td>Y</td>
</tr>
<tr>
<td>Hydrogen 1.008</td>
<td>Phosphorus 30.974</td>
<td>Phosphorus 30.974</td>
<td>Yttrium 88.906</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>67</th>
<th>3</th>
<th>66</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ho</td>
<td>Li</td>
<td>Dy</td>
<td>S</td>
</tr>
<tr>
<td>Holmium 164.930</td>
<td>Lithium 6.941</td>
<td>Dysprosium 162.50</td>
<td>Sulfur 32.066</td>
</tr>
</tbody>
</table>

Hydroxide, Hydroxide, Hydroxide!

Merry Christmas!