Predicting a Drug’s Membrane Permeability: A Computational Model Validated With in Vitro Permeability Assay Data

Bennion BJ, Be NA, McNerney MW, Lao V, Carlson EM, Valdez CA, Malfatti MA, Enright HA, Nguyen TH, Lightstone FC, Carpenter TS.

The transfer of drugs through cell membrane

- **Passive diffusion**
 1. A process by which a compound moves down its concentration gradient without a membrane actively participating.
 2. The rate of passive diffusion across of membrane is proportional to the partition coefficient of the compound, the diffusion coefficient through the membrane, and the compound’s concentration gradient across the membrane.

- **Active transport**
 1. A process by which a transport protein using energy (e.g. APT hydrolysis) to shuttle a molecule across the membrane against concentration gradient.
 2. Some hydrophilic drugs could be transported through carrier-facilitated transport protein.
 3. Efflux pumps (e.g. P-glycoprotein).

A: paracellular transport
B: transcellular transport
C: transporter-facilitated pathway
D: transport-restricted pathway
in vitro models for predicting membrane permeability

- **PAMPA assay**
 1. Models transcellular (passive) absorption.
 2. Two compartments are separated by one artificial membrane filter. 96-well plate permits for high-throughput compound screening.

- **Caco-2 assay**
 1. Human colon carcinoma cell line spontaneously grows as a monolayer.
 2. All mechanisms are modelled.
in silico models for predicting membrane permeability

Knowledge-based QSPR model

1. Mathematic description of the statistical relationship between experimental permeability measurements of training compounds and their chemical structure and physiochemical properties (descriptor).

2. The most critical parameter in QSPR model is Lipophilicity (LogP).

 \[
 \text{LogP}_{\text{oct}} = 5.83 (\pm 0.53) \cdot V/100 - 0.74 (\pm 0.31) \cdot \pi^* - 3.51 (\pm 0.38) \cdot \beta - 0.15 (\pm 0.23) \cdot \alpha - 0.02 (\pm 0.34)
 \]

3. Success rate extremely depends on the compounds in the training set, thus transferability is limited.

MD-based inhomogeneous solubility-diffusion model

Three-step process

Anisotropic nature of membrane
Overview of this work

- Exploring the effectiveness of the combined use of umbrella sampling molecular dynamics simulation and PAMPA assay in predicting membrane permeability.

1. Calibration of MD model with PAMPA assay on training compounds.

2. Assessing MD model against PAMPA assay on target compounds.
Studied compounds

- Calibration compounds

- 18 structurally related testing compounds: LLNL1-LLNL18
Experimental procedures

- MD simulation
 1. Each system contains 5124 water molecules and 72 DOPC molecules and a small compound.
 2. Each system was coupled with 100 individual simulations, where compound was constrained at different z-axis position. Each simulation was run for ~50 ns.
 3. The potential of mean force (PMF) profile and position-dependent diffusion of each compound was calculated using the last 30-ns MD trajectory.

\[
\text{potential of mean force (pmf) } w(z) = - \int_{-l}^{z} \langle F_z(z') \rangle_{z'} dz' \\
\text{position-dependent diffusion } D(\langle Z \rangle) = \frac{\text{var}(z)}{\int_{-\infty}^{\infty} c_{zz}(t) dt}
\]

\[
\text{position-dependent resistance } R(z) = \exp\left(\frac{\beta \Delta G(z)}{D(z)}\right) \\
\text{overall permeation coefficient } P_{\text{eff}} = \frac{1}{\int_{-z_b}^{z_b} R(z) dz}
\]

- PAMPA assay
 1. The Gentest Precoated PAMPA Plate System (Corning Discovery Labware) was applied.
 2. Donor well and receiver well were separated by a filter plate precoated with phospholipid-oil-phospholipid trilayer consisting of DOPC phospholipids.
 3. Compounds were incubated for 5 h at 25°C and then quantified using the Acquity ultra performance liquid chromatography (UPLC) system.
Results

- Assessment of MD-based prediction accuracy

<table>
<thead>
<tr>
<th>Compound</th>
<th>LogP_{eff} PAMPA</th>
<th>LogP_{eff} PMF</th>
<th>Permeation category</th>
<th>From PAMPA</th>
<th>From PMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMB4</td>
<td>-9.25</td>
<td>-16.29</td>
<td>Impermeable</td>
<td>Impermeable</td>
<td></td>
</tr>
<tr>
<td>HI-6</td>
<td>-7.69</td>
<td>-11.16</td>
<td>Impermeable</td>
<td>Impermeable</td>
<td></td>
</tr>
<tr>
<td>2-PAM</td>
<td>-7.52</td>
<td>-6.77</td>
<td>Impermeable</td>
<td>Impermeable</td>
<td></td>
</tr>
<tr>
<td>Theophylline</td>
<td>-5.91</td>
<td>-0.02</td>
<td>Low</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Diazepam</td>
<td>-5.40</td>
<td>1.37</td>
<td>Medium</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Chlorpromazine</td>
<td>-5.26</td>
<td>3.26</td>
<td>High</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Atropine</td>
<td>-5.26</td>
<td>1.82</td>
<td>High</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Progesterone</td>
<td>-4.94</td>
<td>1.99</td>
<td>High</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Promazine</td>
<td>-4.88</td>
<td>3.31</td>
<td>High</td>
<td>High</td>
<td></td>
</tr>
</tbody>
</table>

Linear correlation between P_{eff}^{PMF} and P_{eff}^{PAMPA} is extremely good ($R^2=0.97$) among calibration set

In Vitro permeability cutoff:

- $Log P_{eff}^{PAMPA} < -6.14$: impermeable
- $-6.14 < Log P_{eff}^{PAMPA} < -5.66$: low permeability
- $-5.66 < Log P_{eff}^{PAMPA} < -5.33$: medium permeability
- $-5.33 < Log P_{eff}^{PAMPA}$: high permeability

MD permeability cutoff:

- $Log P_{eff}^{PMF} \leq -2.05$: impermeable
- $-2.05 < Log P_{eff}^{PMF} < -0.15$: low permeability
- $0.15 < Log P_{eff}^{PMPA} < 1.62$: medium permeability
- $1.62 < Log P_{eff}^{PMPA}$: high permeability

11/19/2017
MD-based permeability prediction successful rate on testing set: 78% (14/18)
Comparison with LogP prediction

MD prediction outperforms LogP prediction

<table>
<thead>
<tr>
<th>method</th>
<th>calibration compound correlation (R^2)</th>
<th>LLNL1—LLNL18 compounds correct (%)</th>
<th>false positives</th>
<th>false negatives</th>
<th>“permeable” compounds correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMF</td>
<td>0.97</td>
<td>78</td>
<td>4</td>
<td>0</td>
<td>8/8</td>
</tr>
<tr>
<td>SLogP</td>
<td>0.53</td>
<td>56</td>
<td>0</td>
<td>8</td>
<td>0/8</td>
</tr>
<tr>
<td>miLogP</td>
<td>0.75</td>
<td>56</td>
<td>0</td>
<td>8</td>
<td>0/8</td>
</tr>
<tr>
<td>(c)LogP</td>
<td>0.45</td>
<td>56</td>
<td>1</td>
<td>7</td>
<td>1/8</td>
</tr>
<tr>
<td>CLogP</td>
<td>0.44</td>
<td>61</td>
<td>1</td>
<td>6</td>
<td>2/8</td>
</tr>
</tbody>
</table>
Conclusion

- MD-based computational model of membrane permeability can predict the PAMPA-defined permeability category of a compound with greater accuracy than LogP-based model.

- MD-based permeability prediction could be used as an evaluation tool to rule out impermeable drug candidates with a low false-negative rate.