Difluorobenzocyclooctyne: Synthesis, Reactivity, and Stabilization by β-Cyclodextrin

Ellen M. Sletten,† Hitomi Nakamura,† John C. Jewett,† and Carolyn R. Bertozzi*†‡§‖

Departments of Chemistry and Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California 94720, and The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720
Bioorthogonal Reactions - Overview

Definition: "Chemical reactions that do not interfere with biological processes."

Native Chemical Ligation (NCL) - Kent and co-workers, 1994:

Staudinger Ligation - Bertozzi and co-workers, 2000:

Cyclooctynes - Overview

- Smallest stable, unsubstituted cycloalkyne
- Alkyne bond angle = \(\sim 156^\circ \)
- Strain energy = \(\sim 18 \text{ kcal/mol} \)

- The difference in hydrogenation enthalpies of cyclooctyne versus 4-octyne is \(\sim 10 \text{ kcal/mol} \)

Note: 3,3,7,7-tetramethylcycloheptyne has been prepared and isolated:

Reactions of cyclooctynes:

Trimerization:

Radical Reactions:

Cycloadditions:

Synthesis of Cyclooctynes

- Oxidative and Thermal Decomposition:

\[\text{NH}_2 \quad \text{HgO} \quad \rightarrow \quad \text{HgO} \quad \rightarrow \quad \text{NH}_2 \]

- Elimination:

\[\text{LiNR}_2 \quad \rightarrow \quad \text{LiNR}_2 \quad \rightarrow \quad \text{LiNR}_2 \]

- Examples from Bertozzi lab:

\[\text{KHMDS, TESCI} \quad \rightarrow \quad \text{KHMDS, TESCI} \quad \rightarrow \quad \text{KHMDS, TESCI} \]

1. LiHMDS, TESCI
2. Selectfluor
3. KHMDS, TESCI
4. Selectfluor

Copper-free Click Chemistry with Cyclooctynes

- Cyclooctynes react with azides to give triazole products without the use of Cu catalysis:

\[
\text{PhN}_3 \quad \text{Ph} \quad \text{N} \quad \text{N} \quad \text{N}
\]

"explosionsartig" - like an explosion

- Further Activation - kinetic study:

\[
\text{BnN}_3 \quad \text{Bn} \quad \text{N} \quad \text{N} \quad \text{N}
\]

\[
\text{O} \quad \text{CO}_2\text{H} \quad \text{Bn} \quad \text{O} \quad \text{CO}_2\text{H}
\]

\[
k_{rel} = 1
\]

- Other examples:

\[
\begin{align*}
\text{Bertozi, C.R. et al.; ACS Chemical Biology, 2006, 1(10), 644-648} \\
\text{Jewett, J.C., Bertozi, C.R.; Chem. Soc. Rev. 2010, 39, 1272.}
\end{align*}
\]
Applications - Bioorthogonal Reactions Using Cyclooctynes

- **Protein Labelling:**

 ![Diagram of protein labelling reaction]

 \[\text{E. coli} \rightarrow \text{PEO-Biotin} \]

 Nessen, M.A., et al.; *J. Proteome Res. 2009*, 8, 3702

- **Lipid Labelling:**

 ![Diagram of lipid labelling reaction]

 Imaging in living cells

- **Glycan imaging:**

 ![Diagram of glycan imaging]

 • Applied in living mice and monitored in real time.

Title Paper - Difluorobenzocyclooctyne - Synthesis

OCT
\[k_{rel} = 1 \]

DIFO
\[k_{rel} = 40 \]

DIBO
\[k_{rel} = 30 \]

DIFBO
\[k_{rel} = 110 \]

1-benzosuberone

1. hexylamine, TFA (cat)
 Dean Stark, cyclohexane
2. Selectfluor then HCl (3M)
 70% - 2 Steps

AlMe_3, TMSCHN_2
CH_2Cl_2, -78 °C
97%

TMS

KHMDS, Tf_2O, THF
-78 °C - -45 °C
80%

Unstable

CsF
• No C₃-symmetric product was observed

• To test if DIFBO was indeed formed, in situ trapping with benzyl azide was performed:
Title Paper - Difluorobenzocyclooctyne - Stabilization by β-Cyclodextrin

1. CsF, CH$_3$CN then Fcc eluting with hexanes
2. Dilution with CH$_3$CN, evaporation of hexanes
3. β-cyclodextrin, H$_2$O, lyophilization

- Isolated as a stable, white powder
- Characterized as the inclusion complex using extensive solution and solid-state NMR techniques

- LCMS trace:
Title Paper - Difluorobenzocyclooctyne - Complexation with \(\gamma \)-Cyclodextrin
The formation of both dimers raises interesting questions:

1. Does the dimerization event occur selectively inside the γ-cyclodextrin cavity?
2. Can the γ-cyclodextrin cavity accommodate two molecules of BIFBO?
3. What is the rate difference between the trimerization event and reaction with O₂?
• A new substituted cyclooctyne (DIFBO) has been discovered with drastically superior kinetics in 2+3 cycloadditions with benzyl azide.

• Due to the enhanced reactivity of DIFBO, complexation with β-cyclodextrin was found to stabilize DIFBO allowing for easy storage and manipulation.

• The inclusion complex of DIFBO and γ-cyclodextrin produced two compounds presumed to arise from a single antiaromatic intermediate, thus providing a possible means to further study antiaromaticity.