Four Step Synthesis of the Antimalarial Cardamom Peroxide via an Oxygen Stitching Strategy

Xirui Hu and Thomas J. Maimone

J. Am. Chem. Soc., Article ASAP

DOI: 10.1021/ja502208z

Nicholas Reed
Wipf Group Current Literature
April 12, 2014
Malaria and Endoperoxides

• By the 1960s, Malaria had a resurgence
 – Mesquitos developed resistance to the insecticide DDT
 – Resistance to synthetic analogues of quinine

• Chinese government discovered that *Artemisis annua* had promising antimalarial properties
 – Led to isolation of artemisinin and development of better analogues via synthetic means
 – Has been the “front-line” treatment for malaria since
 – Artemisinin resistant malaria has begun to develop*

• Endoperoxide bridge is essential for activity
 – Build-up of free heme groups leads to breakdown of peroxide bridge
 – Resulting peroxo radical rearranges to carbon-centered radical (reductive scission vs. open peroxide models)

Artemisia annua
gobotany.newenglandwild.org

Molecules 2010, 15, 7603
*Nat. Prod. Res. 2004, 18, 503
*Drugs Future 2005, 30, 509
Presumed Mechanism of Action

• Analogous to mechanisms proposed for atemisinin

Open Peroxide Model

Reductive Scission Model:

J. Med. Chem. 1995, 38, 2273
J. Am. Chem. Soc. 1992, 114, 8328

Open Peroxide Model:

ChemMedChem 2007, 2, 1480
Cardamom Peroxide

- Isolated from *Amomum krervanh* Pierre (“Round Siam Cardamom”)
- Structure and relative stereochemistry determined primarily by NMR, IR, and X-ray diffraction experiments
 - Absolute stereochemistry unassigned but initially assumed to be derived from the same myrtenals that were also isolated
- EC$_{50}$ = 170 nm against *P. falciparum*
- Presumed mechanism of action involves activation by Fe(II) to cleave peroxide bridge and subsequent alkylation of malarial proteins

Key Structural Features
- 1,2-dioxepane motif
- Semi-symmetric bipinane structure

Molecules **2010**, *15*, 1705

www.tcmfe.com
Previous Synthetic Work

- Unsuccessful radical cyclization to 7-membered endoperoxide

\[\text{HOOC} \rightarrow \text{PhH} \rightarrow \text{Ac}_2\text{O, pyr.} \]

\[n = 1 \ (36\%) \]
\[n = 2 \ (14\%) \]
\[n = 3 \ (0\%) \]

- Successful analog synthesis via silylperoxide cyclization onto a dioxolane

\[\text{Br} \rightarrow \text{OTMS} \rightarrow \text{DCM, -78 °C} \]

\[41\% \]

\[\text{dr: 3/1} \]

Bioorg. Med. Chem. 2003, 11, 3791

Analogs show roughly 10-fold decrease in potency

No synthesis of natural product to date!
Restrosynthesis

- Utilizes readily available pinene building blocks and molecular oxygen
- All stereochemical information comes from chiral pool (pinene skeleton)
- Challenges to overcome: 6-exo closure preference of peroxy radical, literature precedence, and chemo-, regio-, and stereochemical questions in cyclization

J. Am. Chem. Soc., Article ASAP, DOI: 10.1021/ja502208z
Four-Step Synthesis of (+)-Cardamom Peroxide

- McMurry Coupling
- [4+2] cycloaddition using singlet oxygen and Kornblum-DeLaMare Rearrangement
- Dess-Martin Oxidation

3 Steps
28% yield overall to penultimate compound

J. Am. Chem. Soc., Article ASAP, DOI: 10.1021/ja502208z
Four-Step Synthesis of (+)-Cardamom Peroxide

Entry	**Conditions**	**Isolated Yield (%)**^a
1 | Fe₂(ox)₃·6H₂O (5 equiv), NaBH₄ (6.4 eq), EtOH/H2O, 0 °C | 0
2 | Fe^{II}(Pc), NaBH₄ (3 eq), EtOH, 0 °C | 0
3 | Fe(acac)₃, PhSiH₃ (2.5 eq), EtOH, 0 °C → rt | 0
4 | Co(acac)₂, PhSiH₃ (2.5 eq), DCM/i-PrOH, -10 °C → rt | 6
5 | Mn(dpm)₃, PhSiH₃ (2.5 eq), DCM/i-PrOH, -10 °C | 34
6 | Mn(dpm)₃, PhSiH₃ (2.5 eq), DCM/i-PrOH, -10 °C | 41^b
7 | Mn(dpm)₃, PhSiH₃ (2.5 eq), t-BuOOH (1.5 eq), DCM/i-PrOH, -10 °C | 52^b

^aReaction performed on 0.1 mmol scale using 10 mol% of catalyst unless otherwise stated
^bPhenylsilane added slowly over 12 h as a solution in DCM

J. Am. Chem. Soc., Article ASAP, DOI: 10.1021/ja502208z
Four-Step Synthesis of (+)-Cardamom Peroxide

1. Formation of manganese hydride and subsequent complexation of triplet oxygen
2. Conjugate addition to form manganese peroxyenolate
3. Subsequent rearrangement to form peroxy ketone

• Deuterium labeling experiments confirm irreversible addition of hydride by manganese
• Radical mechanism is also possible*

*Tetrahedron Lett 2000, 41, 9725
*Tetrahedron Lett 2000, 41, 9731
Four-Step Synthesis of (+)-Cardamom Peroxide

J. Am. Chem. Soc., Article ASAP, DOI: 10.1021/ja502208z
Reductive Cleavage with Fe(II)

\[
\text{FeCl}_2 (0.8 \text{ eq}) \quad \text{MeCN/H}_2\text{O, rt, 45 min}
\]

• X-Ray confirmation of structures 12 and 14

\[\text{J. Am. Chem. Soc., Article ASAP, DOI: 10.1021/ja502208z}\]
Conclusions

• 4 Step enantiospecific total synthesis of Cardamom Peroxide (15% overall yield)
 ~Utilizes a Mn-catalyzed olefin hydroperoxidation

• Determined mode of reductive cleavage upon reaction with Fe(II)