
The First Catalytic, Asymmetric []-Additions of Isocyanides. Lewis-Base-Catalyzed, Enantioselective Passerini-Type Reactions

Scott E. Denmark, and Yu Fan

Roger Adams Laboratory
Department of Chemistry
University of Illinois

Isocyanides in Organic Chemistry

- Only functional moiety with a formally divalent carbon atom which provides a unique pattern of chemical reactivity.
- Ally isocyanide, the first synthetic isocyanide, was generated in 1859 by Lieke from allyliodide and silver cyanide.
- Modern preparation of isocyanides usually entails the dehydration of formamides with numerous reagents

The Passerini Reaction

The Ugi Reaction

Synthesis of (+/-) hydrastine

Falck, J. R.; Manna, S. *Tetrahedron Lett.* **1981**, *22*, 619-620.

Synthesis of Azinomycin A, B

Armstrong, R. W.; Combs, A. P.; Tempest, P. A.; Brown, S. D.; Keating, T. A. Acc. Chem. Res. 1996, 29, 123-131

Synthesis of Eurystatin A

Owens, T. D.; Araldi, G.-0L.; Nutt, R. F.; Semple, J. E. *Tetrahedron Lett.* 200142, 6271-6274.

Some diastereoselective approaches to the []-addition of isocyanates in Passerini and Ugi chemistry

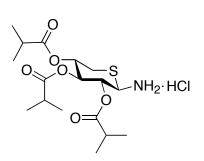
H., NH₂ R

∏-ferrocenylalkylamines

Early chiral auxilliaries used in the Ugi reaction provided poor product yields modest diastereoselectivities

Demharter, A.; Ugi, I. J. Prakt. Chem. 1993, 335, 244.

Camphor-2-cis-methilidene-isocyanide


Effective auxilliary for the Passerini reaction

Reported reaction yields of 84-96%

Reported %de 92-93%

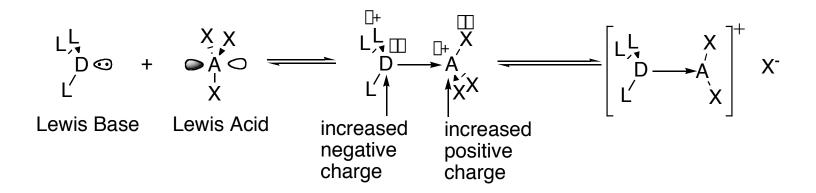
Auxilliary was not effective in the Ugi reaction.

Bock, H.; Ugi, I. J. Prakt. Chem. 1997, 385-9.

1-amino-5-deoxy-5-thio-2,3,4-*O*-isobutonyl-<u></u> D-xylopyrannose · HCl

Recenly applied chiral aulilliary for the Ugi reaction

Reported reaction yields and %de of up to 92%


Simple removal with TFA and Hg(OAc)₂ in methanol

Ross, G. F.; Herdtweck, E.; Ugi, I. Tetrahedron 2002, 58, 6127-6133.

Why have asymmetric variants of these reactions failed to develop?

- Following Lewis acid activation of the aldehyde and \square -addition of the first equivalent of isonitrile, additional equivalents can add to the zwitterionic intermediate i... What a mess!
- In order for catalyst turnover to occur, cleavage of the bond between MX_n and the product must be facile. Often not the case in \square -additions.
- Asymmetric modification of Lewis acids often leads to deactivation with respect to their unmodified counterparts.

Potential Solution: Lewis base activation of the Lewis Acid

• Gutmann's 4th rule:

"....although a donor-acceptor interaction will result in a net transfer of electron density from a donor species to an acceptor species, it will, in the case of polyatomic species, actually lead to a net increase or "pileup" of electron density at the donor atom of the donor species and to a net decrease or "spillover" of electron density at the acceptor atom of the acceptor species..."

Advantages of the Lewis base activation of Lewis acids in the Passerini and Ugi reactions

- Nitrilium ion can capture the now dissociated halide ion following carbonyl activation and isonitrile addition
- The attenuated activity of the Lewis acid-substrate complex should promote dissociation of the complex and activation of a new molecule of SiCl₄.

Addition of Isocyanides to Benzeldehyde

entry	isocyanide	product	catalyst	yield, ‰	et _p	1a =	` N≣C
1°	1a	3a		79			/
2^d	1a	3a	4a	90			
3^e	1a	3a	4b	94		4a =	HMPA
4f.g	1a	3a	5a	83	90.2/9.8		
$5^{f,h}$	1a	3a	5a	94	94.3/5.7		
$6^{f,i}$	1a	3a	5a	89	98.1/1.9	4b =	pyridine-N-oxide
7fj	1a	3a	5a	96	>99/1k		

Reaction Scope I (modified isonitriles)

RNC + PhCHO + SiCl₄
$$\frac{\text{catalyst}}{-74 \, ^{\circ}\text{C}}$$
 $\frac{\text{sat. aq.}}{\text{NaHCO}_3}$ Ph NHR $\frac{\text{1a}}{\text{O}}$ 1b = $\frac{\text{N} \equiv \text{C}}{\text{N} \equiv \text{C}}$

entry	isocyanide	product	catalyst	yield, ‰	eц
8e,I	1b	3n	4b	76	
9 <i>f.i</i>	1b	3n	5a	82	73.2/26.8
10€,m	1c	30	4b	72	
$11^{f,m}$	1c	30	5a	83	83.3/16.7
$12^{e,m}$	1d	3р	4b	69	
$13^{l,m}$	1d	3р	5a	80	88.5/11.5

Reaction Scope II (modified aldehydes)

			catalyst		
entry	R	product	4b yield, %વ <i>ե</i>	5a yield, %वट	er ^ø
1	4-CH ₃ C ₆ H ₅ (2b)	3b	87	91	99.9/0.1
2	4-CH ₃ OC ₆ H ₄ (2c)	3c	92	89	98.3/1.7
3	4-CF ₃ C ₆ H ₄ (2d)	3d	87	89	96.5/3.5
4	2-naphthyl (2e)	3e	90	93	99.7/0.3
5	1-naphthyl (2f)	3f	87	92	$92.2/7.8^{e}$
6	2-furyl (2g)	3g	76	83	95.9/4.1
7	(E)-PhCH=CH (2h)	3h	73	81	97.8/2.2
8	(E)-PhCH=CH(CH ₃) (2i)	3i	86	86	67.4/32.6
9	phenylpropargyl (2j)	3j	85	76	77.0/23.0
10	PhCH ₂ CH ₂ (2k)	3k	89	92	81.9/18.1
11	cyclohexyl (21)	31	72	53	87.1/12.9f
12^{g}	$PhCH_2CH_2(2k)$	3m	84	87	70.0/30.0

[&]quot;Yields of chromatographically homogeneous material. b With 10 mol % of pyridine-N-oxide. With 5 mol % of 5a. d Determined by CSP-SFC. Determined by CSP-HPLC. Determined by CSP-GC. 21,1,3,3-Tetramethylbutyl isocyanide (1e) served as the nucleophile.

Facile Conversion of Imidoyl Chlorides to Methyl Esters

		cata	alyst		
aldehyde	product	4b yield, % ^{a,b}	5a yield, %≉∈	config	er ^d
2a 2h 2k	6 7 8	83 74 83	97 71 88	S S	> 99/1 97.9/2.1 ^e 81.8/18.2

^a Yields of chromatographically homogeneous material. ^b With 10 mol % of pyridine-N-oxide. ^c With 5 mol % of 5a. ^d Determined by CSP-SFC. ^e Determined by CSP-GC.

Summary and Conclusions

- The first catalytic, enantioselective \[\] -additions of isocyanides to aldehydes has been described
- Activation of a weak Lewis acid with a chiral Lewis base was demonstrated to catalyze asymmetric Passerini-type reactions