Rhodium(III)-Catalyzed Dehydrogenative Heck Reaction of Salicylaldehydes

Shi, Z.; Schröder, N.; Glorius, F. *Angew. Chem. Int. Ed.* **2012,** *Early View,* DOI 10.1002/anie. 201203224

Current Literature Presented by Melissa Sprachman July 28, 2012

Functionalization of Aldehyde C-H Bonds

Umpolung of Aldehydes with N-Heterocyclic Carbenes (NHCs):

Functionalization of Aldehyde C-H Bonds

Starting Point: Intramolecular Alkene Hydroacylation:

Lochow, C. F.; Miller, R. G. J. Am. Chem. Soc. 1976, 98, 1281-1283

Willis, M. C. Chem Rev. 2010, 110, 725-748.

Intermolecular Alkene Hydroacylation

No hydroacylation products were formed when *saturated* aldehydes were used as substrates.

It was hypothesized that internal alkene coordination was required for reactivity.

\rightarrow Use of *heteroatom* chelation as a strategy for intermolecular hydroacylation

Lochow, C. F.; Miller, R. G. *J. Am. Chem. Soc.* **1976**, *98*, 1281-1283. Vora, K. P.; Lochow, C. F.; Miller, R. G. *J. Organomet. Chem.* **1980**, *192*, 257-264.

Hydroacylation via Heteroatom Chelation

quant.

Kokobu, K.; Matsumasa, K.; Nishinaka, Y.; Miura, M.; Nomura, M. *Bull. Chem. Soc. Jpn.* **1999**, *72*, 303-311.

Dehydrogenative Heck Reaction (DHR)

Dehydrogenative Heck Reaction:

Bras, J. L.; Muzart, J. Chem. Rev. 2011, 111, 1170-1214.

reduced oxidant

Rh(III)-Mediated C-H Olefination

Use of an oxidizing directing group:

Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. *J. Am. Chem. Soc.* **2011**, *133*, 2350-2353.

Inspiration for the Title Paper

Lu, Y.; Wang, D.-H.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 5916-5921

Page 8 of 17

Rh-Catalyzed Synthesis of Chromones

Rh(III)-Catalyzed DHR of Salicylaldehydes

Catalyst and Oxidant Optimization:

Entry	Catalyst (mol%)	Oxidant (equiv)	Solvent	Yield
1	$[RuCl_2(p-cymene)]_2$ (2.5)	$Cu(OAc)_2(2)$	<i>t</i> -amylOH	0%
2	$[Cp*RhCl_2]_2$ (2.5)	$Cu(OAc)_2(2)$	<i>t</i> -amylOH	12%
3	$[Cp*RhCl_2]_2$ (2.5)	$Cu(OAc)_2(4)$	<i>t</i> -amylOH	48%
4^a	$[Cp*RhCl_2]_2$ (2.5)	Cu(OAc) ₂ (4)	DCE	76%

^{*A*}10 mol% 1,2,3,4-tetraphenyl-1,3-cyclpentadiene was used as a ligand

Selected examples from the SI from the Title paper.

Salicylaldehyde Substrate Scope

76% (93:7)

<u>R</u>1

Н

Me

OMe

SMe

 NO_2

CO₂Me

Ph

Salicylaldehyde Substrate Scope

Olefin Substrate Scope

Mechanistic Insights

Proposed Mechanism

Salicylaldehyde-Based Natural Products

aurone

flavone

2'-hydroxychalcone

flavanone

Alternative synthesis of aurones:

Harkat, H.; Blanc, A.; Weibel, J.-M.; Pale, P. J. Org. Chem. 2008, 73, 1620-1623.

Yu, M.; Skouta, R.; Zhou, L.; Jiang, H.-f.; Yao, X.; Li, C.-J. J. Org. Chem. 2009, 74, 3378-3383.

Summary and Outlook

A catalytic DHR reaction using salicylaldehydes has been developed.

The methodology for forming aurone derivatives may be limited to cases where electron-deficient olefins are used as substrates.

The authors demonstrated the necessity of heteroatom chelation for the reaction to proceed.