Total synthesis of Salvinorin A

Shenvi, R., Bohn, L. M. and coworkers. ACS Cent. Sci. **2017**, 3, 1329.

Wipf Research Group - Current Literature

Manwika Charaschanya August 11, 2018

Salvinorin A

- Plant metabolite of Salvia divinorum
- Most potent naturally occurring hallucinogen
- Nonpeptide-like & non-nitrogenous scaffold (vs. opioid motifs)
- Diterpene with 7 chiral centers
- Agonist of kappa-opioid receptor (KOR), a subtype of G-proteincoupled receptor (GPCR)
- Selective for KOR over *mu* and *delta*-opioid receptors (however, low affinity for MOR & shown to be an allosteric modulator of MOR)
- On-going race for biased KOR agonists towards clinical studies

Kappa opioid receptors

GPCR signaling

'functional selectivity'

Roach, J. J.; Shenvi, R. *Bioorg. Med. Chem. Lett.* **2018**, 28, 1436. Rankovic, Z.; Brust, T. F.; Bohn, L. M. *Bioorg. Med. Chem. Lett.* **2016**, 26, 241.

- First total synthesis by Rook (2006) was incomplete
- Evan's synthesis of Sal A was reported in 33 steps (2007)
- Hagiwara published a series of first- (2008) & second-generation syntheses (2009)
- Forsyth's synthesis of Sal A was reported in 2016

Evan's synthesis of Sal A was reported in 33 steps (2007)
Retrosynthetic analysis:

followed by macrolactonization

Hagiwara first- (2008) & second-generation syntheses (2009)

Retrosynthetic analysis:

(a) First generation

•epimerization of C8 (dr 7:3); analogous to Evan's group

•originates from Wieland-Mischler ketone (known)

(b) Second generation:

- resolved unfavorable selectivity of the 3-lithiofuran addition (use of furyl ketone vs. furyl alcohol)
- established shorter route; 20 steps (0.95% overall yield) to 13 steps (2.8% overall yield)

Hagiwara and coworkers. *Org. Lett.* **2008**, 10, 1365. Suzuki and coworkers. *Tetrahedron*. **2009**, 65, 4820.

Synthesis by Forsyth and coworkers (2016)

Challenges in the total synthesis of Sal A

- Reactivity & thermodynamic stability of structural features: transdecalin system, 6-membered lactone & furan
- Known configurational liability of C8 carbon epimerization issue

Dynamic strategic bond analysis yields 10-step synthesis of 20-nor-Sal A

Retrosynthetic analysis

- Hypothesis-driven
- Directly addresses known problem of configurational liability at C8
- Improve material access for med chem by 10-step synthesis

Dynamic strategic bond analysis yields 10-step synthesis of 20-nor-Sal A

Hypothesis driven:

Docking mode of Sal A ligands

 Sal A & 20-nor-Sal A bind in similar poses with comparable binding scores

 This binding pose suggested comparable binding affinity for Sal A & 20-nor-Sal A

 20-methyl group directed toward extracellular region with no interactions with receptor

 Superimposition of structures show the geometry of the ring system maintained, however, removal of 20methyl slightly displaces C-19 methyl and C-12 of lactone ring; resulting in subtle deviation in the position of the furan ring

Forward synthesis

C8 Epimerization studies

20-nor Sal A stabilizes the Sal A scaffold relative to its C8 epimer

Follow-up paper (Bioorg. Med. Chem. 2018, in press): 06C-20-nor Sal A does not epimerize...even though ketone is more acidic than lactone

Biological activity

	Binding Affinities (K _i , nM)			K _i ratios		Inhibition of cAMP	
Compound	KOR	MOR	DOR	MOR/ KOR	DOR/ KOR	EC ₅₀ , nM	% E _{MAX}
U69,593 U50,488H NorBNI	1.07 ± 0.30 0.39 ± 0.24 0.04 ± 0.01	5176 ± 345	>10,000	4424	>153,177	5.7 ± 0.9 7.5 ± 2.4 (antagonist)	100 97 ± 1
SalA	0.16 ± 0.05	616 ± 251	3417 ± 882	4741	26,285	0.9 ± 0.3	99 ± 1
20-nor-SalA	1.08 ± 0.36	7994 ± 2247	>10,000	7402	>10,933	6.1 ± 1.7	99 ± 2
12- <i>epi-</i> 20-nor- 1	2.13 ± 1.20	5113 ± 1547	3628 ± 913	2400	1703	84 ± 13	102 ± 1
13	0.76 ± 0.25	2841 ± 422	2367 ± 748	3738	3114	23 ± 5.9	100 ± 0
14	0.53 ± 0.20	4546 ± 516	>10,000	8577	>23,206	16 ± 5.8	95 ± 3
12- <i>epi-</i> 14	0.79 ± 0.22	5683 ± 1543	5171 ± 633	7194	6546	15 ± 3.5	101 ± 1
	$H \qquad HO \qquad H$	AcO, 	Me Me	O H H H H O H H O H O H O H O H O H O H	AcO, Me ECO ₂ Me		H H Me DoMe

nor-Sal A

13

14

Sal A

ÒН

Ĥ

NorBNI

нó

Biological activity

 Kappa agonists suppress chloroquine phosphate-induced pruritus in mice

Summary

 Integration of *in silico* docking and retrosynthetic analysis can prompt scaffold redesign --- *dynamic retrosynthetic analysis* -- ✓ maintained scaffold complexity w/ synthesis simplification
✓ maintained target engagement w/ increased scaffold stability

New opportunities to identify opioid receptor probes & drugs

Roach. J.J; Shenvi, R. A. Bioorg. Med. Chem. 2018, 28, 1436.