Total Synthesis of (+)-Yohimbine via an Enantioselective Organocatalytic Pictet–Spengler Reaction

Bart Herleì, Martin J. Wanner, Jan H. van Maarseveen, and Henk Hiemstra

DOI: 10.1021/jo201657n

Liming Cao
Wipf Group Current Literature
11/26/2011
Indole alkaloids: (+)-Yohimbine

- the principal alkaloid found in the bark of evergreen *Pausinystalia yohimbe*, *Rubiaceae* family, with 31 other yohimbane alkaloids, mostly in South Africa

- well-known indole alkaloid in the medicinal history:
 - traditionally used as aphrodisiac
 - treatment of sexual dysfunction (HCl salt)
 - over-the-counter dietary supplement in herbal extract form
 - prescription medicine in pure form
 - remedy for type 2 diabetes in animal and human models carrying polymorphisms of the α₂A- adrenergic receptor gene

General Strategies Employed in Previous Syntheses of Yohimbine and Related Alkaloids

- generation of the DE-ring system, followed by cyclization to form the C ring
 - difficult control of C(3) stereogenic center

- formation of the ABC-ring system, followed by annulation of DE rings
 - lack of methods for:
 - preparation of enantioenriched ABC-rings
 - H8 BINOL PA catalyzed Pictet–Spengler Reaction
 - diastereoselective formation of DE-rings
 - IMDA

Pictet–Spengler Reaction

Previous Work

Tamelen and co-workers: the first total synthesis of the racemic compound

![Chemical structure and reaction scheme](image)

Previous Work

Szantay and co-workers: enantiopure form by a second-order asymmetric transformation step in the resolution of an intermediate

Diastereomeric salt formation with (+)-tartaric acid

Previous Work

Momose and co-workers: the first asymmetric synthesis of (+)-yohimbine

Synthetic Strategies toward (+)-Yohimbine

First catalytic enantioselective total synthesis of (+)-yohimbine
Relative energies of IMDA transition structures

- D-ring: chairlike over boatlike (a-e vs f).
- C3 substituent: equatorial over axial (a vs e).
 - High dienophile facial selectivity, C3-C15 cis.
- N4 substituent: equatorial over axial (a,c vs b,d).
- Negligible endo/exo preference with equatorial N4 substituent (c vs a).
- Significant endo preference with axial N4 substituent (d vs b).
 - Model not good

- B3LYP/6-311+G-(d,p)//B3LYP/6-31G(d) level of density functional theory
- c and d lead to a cycloadduct with the relative configuration of (+)-yohimbine

Relative energies of IMDA transition structures

- N4 substituent: equatorial over axial (a,c vs b,d).
- Small endo preference with equatorial N4 substituent (c vs a).
- Significant endo preference with axial N4 substituent (d vs b).
- Axial N4 substituent TS more accessible
 - Carbamate C=O coplanar with indole, repulsive nonbonding interactions
 - A basis for high diastereoselectivity

Previous Work

\[
\text{Pyrrrole} + \text{Acetone} + \text{Catalyst (2 mo \text{ %})} \rightarrow \text{Product}
\]

\[
\begin{align*}
&\text{Product} \\
&\text{4 Å MS,} \\
&\text{toluene,} \\
&\text{70 °C, 24h}
\end{align*}
\]

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>Conversion(%)a</th>
<th>ee(%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>100</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>90</td>
<td>78</td>
</tr>
</tbody>
</table>

a. Determined by 1H NMR spectroscopy. b. Determined by HPLC on a chiral column (Chiralcel OD).

Previous Work

Total Synthesis of (+)-Yohimbine

The selectivities and overall yield leave much to be desired.

Total Synthesis of (+)-Yohimbine

(+)-Yohimbine
Other applications

Sato and co-workers:

Four steps, 51% overall yield.
Conclusion

• Key steps include:
 o The enantioselective organocatalytic Pictet–Spengler reaction
 o Intramolecular Diels-Alder reaction

• Total synthesis involved nine steps from tryptamine (only six pots) and gave an overall yield of 16%.

• It also worked well for N-alkyltryptamines as was proven in the key chirality introducing step of the total syntheses of arboricine and corynantheidine.