Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent

Masahiro Sai, Hidenori Someya, Hideki Yorimitsu, and Koichiro Oshima Organic Letters ASAP (4/11/2008)

> Wipf Group Current Literature Jennie Kravchenko - 05/31/08

Copper-Catalyzed Cross-Coupling Reactions of Grignard Reagents with Primary Alkyl Halides

Alkyl Bromides:

Tetrahedron 2000, 56, 2737

Alkyl Fluorides:

J. Am. Chem. Soc. 2003, 125, 5646

$$R-F + R'-MgX \xrightarrow{\text{cat. CuCl}_2} R-R'$$

$$R = \text{alkyl} \qquad R' = \text{alkyl, aryl}$$

Alkyl Chlorides:

Angew. Chem. Int. Ed. 2007, 46, 2086

$$\begin{array}{ccc} & & \text{cat. CuCl}_2\\ & \text{cat. Ph} & & \longrightarrow & \text{Me}\\ & & & & \longrightarrow & \text{Alkyl-R} \end{array}$$
 Alkyl-R

Cobalt-Catalyzed Cross-Coupling Reactions of Grignard Reagents with Secondary and Tertiary Alkyl Halides

Substrate Scope:

R-X
$$\begin{array}{c} \text{cat. [CoCl}_2(\text{dppp})] \\ H_2\text{C}=\text{CHCH}_2\text{MgCl} \\ \hline \text{THF, temp.} \end{array}$$

1	Temperature (°C)	Yield of 2 (%)
H ₃ C C ₆ H ₁₁	- 20	83
t-C ₄ H ₉ CH ₃	0	76
<i>n</i> -C ₈ H ₁₇ CI	20	31
n-C ₆ H ₁	3	

- 40

- [CoCl₂(dppp)] effectively catalyzes such reactions of secondary and tertiary alkyl halides with allylic Grignard reagents
- Treatment of substrate with allyl Grignard reagent in the presence of [CoCl₂(dppp)] furnished the ring -opening product
- Existence of radical intermediates account for such ring opening

Angew. Chem. Int. Ed. 2002, 41, 4137

76

Cobalt-Catalyzed Cross-Coupling Reactions of Grignard Reagents with Secondary and Tertiary Alkyl Halides

Proposed Mechanism:

$$R-X \xrightarrow{1} R \cdot \xrightarrow{2} R-CO \xrightarrow{3} R$$

- 1) Single-electron transfer from cobalt complex
- 2) Recombination of alkyl radical and cobalt complex
- 3) Reductive elimination

- π -Allyl ligands may prevent the formation of the vacant coordination sites necessary for &-elimination, which enables allylation of tertiary and secondary alkyl halides as well as of alkyl halides having &-alkoxy groups

Silver-Catalyzed Cross-Coupling Reactions of Grignard Reagents with Secondary and Tertiary Alkyl Halides

Substrate Scope:

- Silver-catalyzed conditions were applicable to benzylation, as well as allylation and methallylation of secondary and tertiary alkyl halides
- Analogous radical pathway was proposed

Organic Letters 2008, 10, 971

Copper-Catalyzed Cyclopentadienylation of Secondary and Tertiary Alkyl Halides Followed by Hydrogenation

General Reaction:

- -Initially formed **2a** undergoes isomerization into **3a** and **3a'** due to the high acidity of the hydrogen on the cyclopentadienyl ring
- Isomers were subjected to hydrogentation in order to simplify analysis of products

Organic Letters ASAP (4/11/2008)

Solvent Effect and Catalyst Screening:

entry	solvent	catalyst	combined yield (%)
1	<i>i</i> -Pr₂O	Cu(OTf) ₂	96
2	<i>t</i> -BūOMe	Cu(OTf) ₂	68
3	toluene	Cu(OTf) ₂	90
4	diethyl ether	Cu(OTf) ₂	16
5	dioxane	$Cu(OTf)_2$	12
6	THF	$Cu(OTf)_2$	15
7	c-C ₅ H ₁₁ OMe	$Cu(OTf)_2$	13
8	Bu ₂ O	$Cu(OTf)_2$	22
9	<i>i</i> -Pr ₂ O	CuF ₂	77
10	<i>i</i> -Pr ₂ O	CuCl ₂	59
11	<i>i</i> -Pr ₂ O	CuCl	44
12	<i>i</i> -Pr ₂ O	CuBr	57
13	<i>i</i> -Pr ₂ O	Cul	31
14	<i>i</i> -Pr ₂ O	CuOAc	30
15	<i>i</i> -Pr ₂ O	CuCN	26
16	<i>i</i> -Pr ₂ O	CuOTf •0.5 C ₆ H	H ₆ 27
17	<i>i</i> -Pr ₂ O	AgNO ₃	26

- Choice of solvent and copper catalyst greatly altered overall yield of products
- Bulky ethers (diisopropyl ether and t
 butyl methyl ether) proved to be most suitable
- Copper(II) halides as well as copper(I) halides exhibited modest catalytic activity
- Silver(I) nitrate, found to be effective in the cross-coupling reaction of tertiary alkyl halides with allyl or benzyl Grignard reagents, was less effective than copper(II) triflate

Organic Letters ASAP (4/11/2008)

Substrate Scope:

Alkyl-X 1
+
$$\frac{5 \text{ mol } \% \text{ Cu(OTf)}_2}{i \cdot \text{Pr}_2\text{O}, 25 °\text{C}, 3 \text{ h}}$$
Alkyl $+$ Alkyl $+$ 3'

MgBr + $\frac{10 \text{ mol } \% \text{ PtO}_2, 0.1 \text{ MPa H}_2}{\text{AcOH, reflux, 12 h}}$
Alkyl $+$ 4

alkyl-X	combined yield of 3 and 3' (%)	overall yield of 4 from 1 (%)
n-C ₈ H ₁₇ CI	88	80
MeO () ₅ Br	90	84
PhS () ₅ Br	95	50
n-C ₆ H ₁₃ Br	51	49
$Ph \left(\begin{array}{c} \\ \\ \\ 2 \end{array} \right) F$	69	61

- Phenylsulfanyl and methoxyl groups were compatible in such reaction conditions without deactivation of the copper catalyst
- Surprisingly, tertiary alkyl fluoride participated in cyclopentadienylation as well

Organic Letters ASAP (4/11/2008)

Stoichiometric Reactions:

amount of Grignard reagent	NMR yield
1.0 equiv	0%
2.0 equiv	15%
3.0 equiv	86%

- Reaction mechanism was studied using the following halide with stoichiometric copper reagents and varying amounts of CpMgBr
- Copper reagent that is active for this reaction might be [Cp₃Cu]MgBr⁶ or a more complex cuprate
- Experiments have been conducted to examine the intermediacy of alkyl radicals in the reaction, however they failed to support the intermediacy

Conclusions and Future Directions

- Copper(II) triflate proved to efficiently catalyze the reaction of tertiary alkyl halides with cyclopentadienyl Grignard reagent.
- With the following hydrogenation of the cyclopentadienyl ring with hydrogen under Pt₂O catalysis, the overall transformation represents formal cyclopentylation of tertiary alkyl halides.
- Future work could include extension of the methodology to other stabilized organometallic reagents, as well as application of this method to functionalized molecules of interest.