Total Syntheses of Heimiol A, Hopeahainol D, and Constrained Analogues

Scott A. Snyder, Nathan E. Wright, Jason J. Pflueger, and Steve P. Breazzano

ACIE Early View

Presented by: Jared Hammill

The Synder Group

- Scott A. Snyder
 - Undergrad @ Williams college
 - Grad school @ Scripps under K.C. Nicolaou
 - 18 papers, 2 book chapters, 1 Book: Classics II
 - Post-doc @ Harvard under E.J. Corey
 - Currently @ Columbia as an Associate Professor of chemistry, without tenure
- Research Focus: Target-Driven Discovery
 - Halonium-Induced polyene cyclization

http://www.columbia.edu/cu/chemistry/groups/snyder/index2.htm

Halonium Induced Cyclizations

- Goal
 - Expand polyene cation-π cascades to include halogen initiators

- Need better synthetic variant of haloperoxidases
- Current problems:
 - Olefin selectivity
 - Poor reactivity with unactivated aromatic systems
 - Aromatic halogenation

Review of pi-cation cascades: Chem. Rev. 2005, 105, 4730

New & Simple Reagents

JACS, **2010**, *132*, 14303

Jared Hammill @ Wipf Group

8/7/2011

Applications

Starting Material	Product	Temp (°C)	Time (min)	yield
OMe	e Me X H	25	5	X= Br (73%) X=I (90%)
	X X H	-25	5	X= Br (76%) X= I (60%)
Ethol	X X O O	0	1	X= Br (80%) X= I (45%) X= CI (18%)
	Cl ^{are} H	-25	5	46% (1:1 mix)
момо	Pr OMOM Br Me H H Pr H F H	-25 I A	5	42%
ACIE, 2009 , <i>121</i> , 7899 JACS, 2010 , <i>132</i> , 14303 <i>Tet</i> , 2010 , <i>66</i> , 4796 ACIE, 2010 , <i>49</i> , 5146 Jared Hammill @ Wipf Group Page 5 of 12				

Title Paper

Synthesis of Precursor

ACIE, 2011, 50, early view ACIE, 2007, 46, 8186

Key Cascade

Kinetic facial selectivity

Substrate Controlled End Game

5-membered Cascade

End Game

Conclusions

First total racemic synthesis of heimiol A and hopeinol D
heimiol A (11 steps, 8.6%, 0.5 mg)
hopeinol D(11 steps, 6.9%, 3.3 mg)

•Key iodolactonization/intramolecular Friedel-Crafts cascade utilizing their new reagent IDSI

•Successfully applied their Friedel-Crafts reaction to a 5membered ring