
Ligand-Free Heck Reaction: Pd(OAc)₂ as an Active Catalyst Revisited

Qingwei Yao,* Elizabeth P. Kinney, and Zhi Yang[†]

J. Org. Chem., Vol. 68, No. 19, 2003

Pd

- •A versatile catalyst for carbon-carbon bond formation.
- •Tolerant to many functional groups such as carbonyl and hydroxyl groups.
- •NOT "VERY" sensitive to oxygen.
- •Not toxic

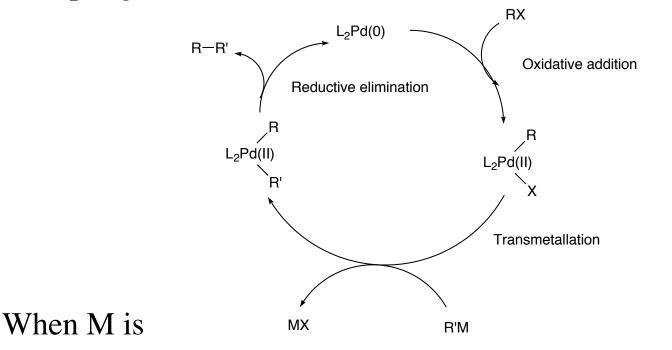
BUT

•Expensive (less expensive than Rd, Pt and Os)

Palladium reagents and catalysts, Jiro Tsuji, Wiley

Two kinds of Pd compounds useful for organic synthesis:

Pd(II): such as $PdCl_2 Pd(acac)_2$ and $Pd(OAc)_2$

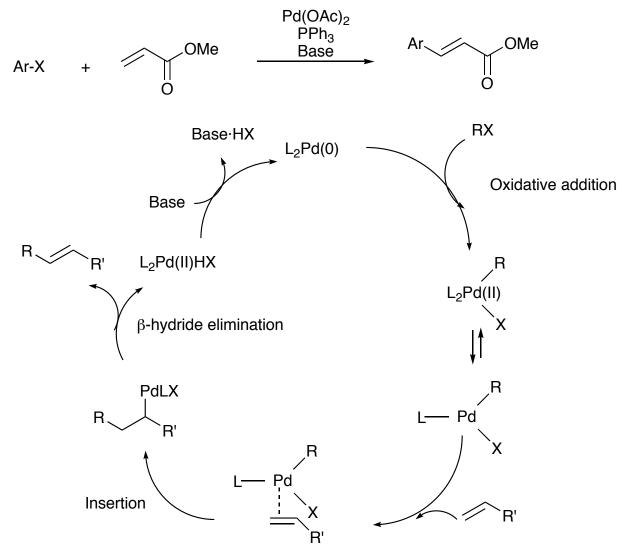

- •Used either stoichiometric rgts or catalysts
- •Stable
- •Used as unique stoichiometric oxidizing agents and s precursors of Pd(0) compelxes

Pd(0): reduced from Pd(II)

- •Used as catalysts
- •Usually prepared from $Pd(OAc)_2$ with phosphine ligands.

Examples of organic reactions using Pd(0)

Coupling reaction



- Sn : Stille reaction
- B : Suzuki reaction
- Cu : Sonogashira reaction
- Zn : Negishi reaction

Organic Synthesis using Transition metals, Rod Bates, Sheffield academic press

Alkene insertion reaction

Heck reaction

Heck reaction

Typically needs 1-5 mol % Pd catalyst along with Phosphine ligand and base
Maximum turnover numbers (TON): only 20-100

•Not practical for large-scale industrial application

Challenge

New Heck reaction catalyst

with higher TONand enhanced reactivity with deactivated aryl bromides or aryl chloride

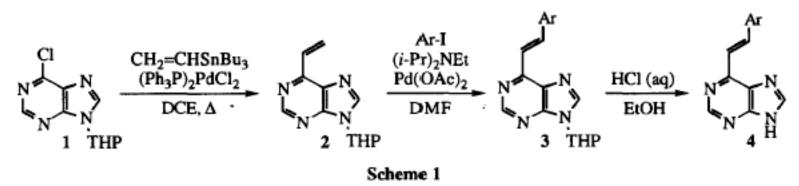
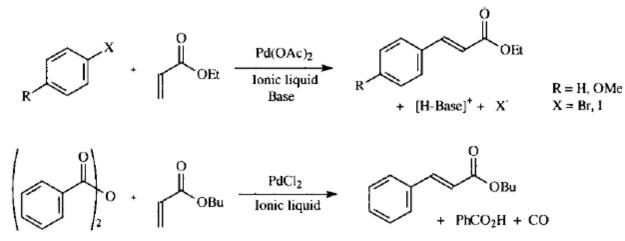

In Phase-transfer condition

Table 2: Effect of Tetraalkylammonium Salts on Palladium-catalysed Arylation of Methyl Acrylate in the Presence of Alkali Metal Hydrogencarbonate as the Base and *in the Absence of Phosphine Ligand*.^(a)

		Pd(OAc) ₂ (5 mol %)	>
	Со,сн,	NaHCO ₃ , QX Molecular sieves Solvent, 60 °C, 3.5 h	Со,сн,
Entry	Solvent	QX	Yield (%) ^{b)}
l	CH ₃ CN	-	3
2	CH ₃ CN	n-Bu ₄ NCl ^{c)}	90
3	CH ₃ CN	n-Bu₄NHSO₄	45
4	CH ₃ CN	n-Bu₄NBr	20
5	DMF	-	5
6	DMF	n-Bu ₄ NCl ^{e0}	99
7	DMF	n-Bu ₄ NHSO ₄	99
8	DMF	n-Bu₄NBr	62

Tetrahedron, Vol. 52, No. 30, pp. 10113-10130, 1996


alkenylpurines 3 in good yields, calculated from the chloropurine 1. We obtained better results when Pd(OAc)₂ alone was employed as catalyst compared with catalysts containing phosphine ligands like triphenylphosphine. Reduced yields in Heck reactions in the presence of phosphine ligands have also been noted by others.²²

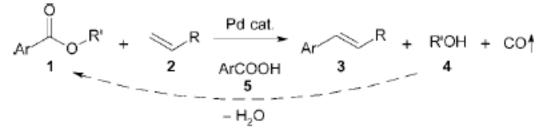
They did not explain why.

Tetrahedron 55 (1999) 211-228

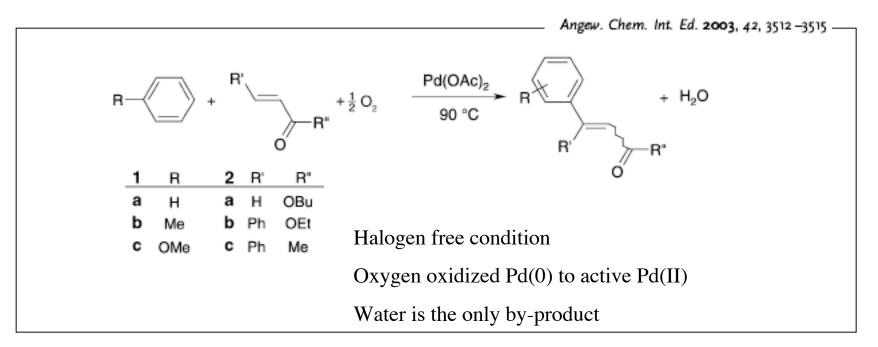
In ionic liquid

Table 1. Heck Reaction of Iodobenzene and Ethyl Acrylate To Give *trans*-Ethyl Cinnamate in Ionic Liquids with 2 mol % of $Pd(OAc)_2$

entry	ionic liquid	additive	base	temp, °C	time, h	yield, %
1	[C ₆ py]C1	none	Et ₃ N	40	24	99
2	[C ₆ py]Cl	none	NaHCO ₃	40	24	98
3	$[C_6 py][PF_6]$	none	NaHCO ₃	80	72	42
4	[C ₆ py][BF ₄]	none	NaHCO ₃	80	72	99
5	$[bmim][PF_6]$	Ph_3P	Et ₃ N	100	1	$95 - 99^{19}$


Majorly, to recycle palladium catalyst

Of course, phosphine ligand accelerated the reaction significantly.


Waste-free Heck reactions

Angew. Chem. Int. Ed. 2002, 41, No. 7 1237

Scheme 1. Decarbonylative Heck olefination of esters.

Various additives were tested

Ligand-free Heck reaction

Possbility of $Pd(OAc)_2$ as an active catalyst without Phosphine ligands

Base Selection : K_3PO_4 showed the best result

TABLE 1. Effect of the Base on the Pd(OAc)₂-Catalyzed Reaction of Bromobenzene and Styrene^a

	Ph-Br + F (1	2 equiv)	Pd(OAc) ₂ se (1.4 equiv.) MA, 140 ^o C	→ Ph → Ph	
		mol % of			
entry	base	Pd(OAc) ₂	time (h)	yield ^b (%)	TON
1	Et₃N	0.1	21		
2	Na ₂ CO ₃	0.1	21	56	560
3	NaOAc	0.1	21	72	720
4	K_3PO_4	0.1	19	93	930
5	K_3PO_4	0.01	19	82	8200
6^c	K ₃ PO ₄	0.00247	44	95	38500

 a Unless otherwise noted, all reactions were performed with 1.0 mmol of PhBr in DMA (1–2 mL) at 140 °C. b Isolated yield after chromatography on silica gel. c 2.0 mmol of PhBr was used.

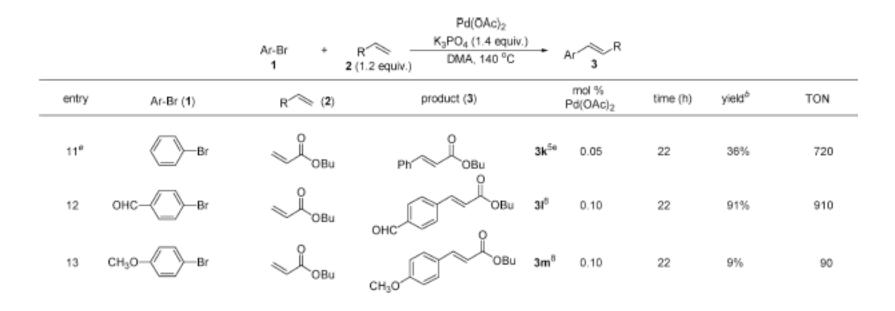
Solvent optimization

DMA showed the best result.

TABLE 2. Effect of the Solvent on the Pd(OAc)₂-Catalyzed Reaction of Bromobenzene and Styrene^a

Ph-Br	Pd(OAc) ₂ + Ph (1.2 equiv.) K ₃ PO ₄ (1.4 equ solvent, 140 °	uiv.) Ph
entry	solvent	yield ^{<i>b</i>} (%)
_1	DMA	95
2	DMF	74
3	NMP	54
4^c	dioxane	<2

^{*a*} Unless otherwise noted, all reactions were performed with 1.0 mmol of PhBr in 1.6 mL of the solvent at 140 °C for 19 h. ^{*b*} Isolated yield after chromatography on silica gel. ^{*c*} This reaction was performed at 100 °C.


Generality of this reaction

		Ar-Br + 1	2 (1.2 equiv.)	Ar 3 R			
en	try Ar-Br (1)	R (2)	product (3)	mol % Pd(OAc) ₂	time (h)	yield ^b	TON
1	онс-	\bigcirc	OHC Ph 3a	^{ia} 0.05	25.5	98%	1960
2	CH3-CH-Br	\bigcirc	CH ₃ Ph 3b ⁴	^{3b} 0.05	24.5	92%	1840
3	CH ₃ -	r-Bu	CH3 3c	13 0.05	24.5	97%	1940
4	CH ₃ O-CH ₃ O-Br	\bigcirc	CH ₃ O Ph 3d	^{ta} 0.05	17	71%°	1420
5	СН ₃ О-С-Вг	r-Bu	CH30 3e	0.05	17	93%	1860
60		\bigcirc	CH ₃ Ph 3f ³	a 0.10	20	63%	630
7	⟨	\bigcirc	Ph~ 3g	¹⁴ 0,05	21	89%	1780
80	СН3-К-Вг	\bigcirc	CH3 3h	¹⁵ 0.10	22.5	86%	860
9 ^d	CH ₃ Br	\bigcirc	CH3 31	0.10	22.5	77%	770
10	d CH3O-	\bigcirc	CH ₃ O 3j ¹	6 0.10	21	82%	820

TABLE 3. Pd(OAc)₂-Catalyzed Heck Reactions of Aryl Bromides with Terminal Olefins, Using K₃PO₄ as the Base^a Pd(OAc)₂

Showed very high yield and TON in various combinations.

Interesting point:

•Activated terminal olefin such as n-butyl arylate gove low yields except for the coupling with the more active 4-bromobenzaldehyde. -> New mechanism?!

•Cyclic olefins such as norbornene and 2,4-dihydropyran did not react.

•Triflate and chloride were completely ineffective in this system.

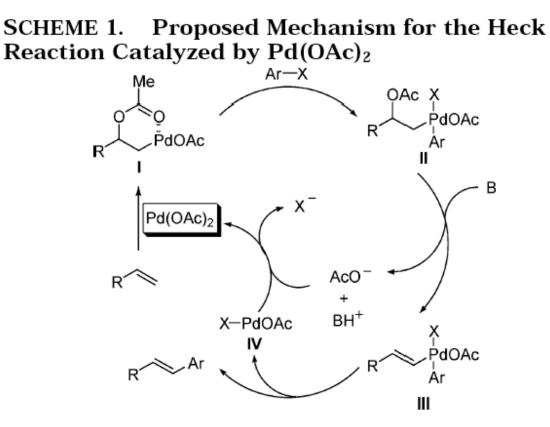
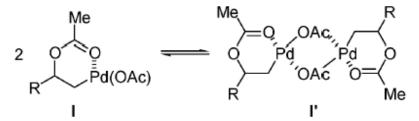

Comparison with other catalyst systems

TABLE 4. $Pd(OAc)_2/K_3PO_4$ in DMA as an Active Catalyst System for the Heck Reaction: Comparison with Other Catalyst Systems¹⁸ $Ar-Br + Ph \longrightarrow \frac{[Pd], additive}{base, solvent} Ar \longrightarrow Ph$


entry	Ar-Br	[Pd] (mol %)	base	solvent	Additive (amount)	conditions	yield	TON	Ref
1	PhBr	Pd(OAc)2(0.01)	K ₃ PO ₄	DMA	none	140 °C, 19 h	82%	8,200	This work
2	PhBr	Pd(OAc)2 (0.00247)	K_3PO_4	DMA	none	140 °C, 44 h	95%	38,500	This work
3	4-MePhBr	Pd(OAc)2 (0.05)	K ₃ PO ₄	DMA	none	140 °C, 24.5 h	92%	1,840	This work
4	4-MeOPhBr	Pd(OAc)2 (0.05)	K_3PO_4	DMA	none	140 °C, 17 h	71%	1,420	This work
5	PhBr	Pd(OAc) ₂ (1.5)	NaOAc	NMP	Bu ₄ NBr	150 °C, 30 h	70%	47	9g
					(20 mol %)				
6	PhBr	PdCl ₂ (SEt ₂) ₂ (0.1)	NaOAc	DMA	Bu ₄ NBr (20 mol %)	150 °C, 24 h	76%	760	18
7	4-MeOPhBr	PdCl ₂ (SEt ₂) ₂ (0.1)	NaOAc	DMA	Bu ₄ NBr (20 mol %)	140 °C, 24 h	38%	380	18
8^{a}	PhBr	Dupont's Pd-cycle (0.002)	NaOAc	DMA	(20 mol %) Bu ₄ NBr (100 mol %)	140 °C, 28 h	56%	28,000	6a
9^{α}	4-MeOPhBr	Dupont's Pd-cycle (0.002)	Et ₃ N	DMA	Bu ₄ NBr (20 mol %)	140 °C, 90 h	10%	5,000	6a
10°	PhBr	Hermann's Pd-cycle (0.1)	NaOAc	DMA	none	140 °C, 26 h	77%	770	4b
Π^{b}	4-MeOPhBr	Hermann's Pd-cycle (0.1)	NaOAc	DMA	none	140 °C, 30 h	69%	690	4b
^a Dupont's Pd-cycle: Pd Pd Pd Pd Pd Pd Pd Me Me					Me R, R Pd OAc (R = o-tolyl)	Pd			

Similar or better than the other catalytic systems.

Proposed mechanism: without Pd(0) species

(20) By analogy to other palladacycles, ${f I}$ may exist in equilibration with its dimeric form:

Intermediate I was assumed because there's no predents of direct oxidative addition of Ar-X to Pd(OAc)₂

Summary

 $Pd(OAc)_2$, in combination with K3PO4 as the base and DMA as the solvent, can be used as a highly reactive catalyst for the Heck reaction.

Activated and deactivated aryl bromides can be used in the absence of any stabilizing ligands or special additives.

Cheap reaction! (cheap catalyst, cheap base and ligand-free)

Limitation

Beneficial to only aryl bromides and unactivated terminal olefins Needs long reaction time Needs high temperature