Asymmetric Allylboration of Acyl Imines Catalyzed by Chiral Diols

Sha Lou, Philip N. Moquist, Scott E. Schaus

J. Am. Chem. Soc. ASAP

Current literature Group Meeting Novembar, 24th 2007 Filip Petronijevic

Chiral homoallylic amines as building blocks in sythesis

Synthesis, **2005**, 2815. Org. Lett. **2000**, 2(13), 1847. J. Am. Chem. Soc. **1990**, 112.

Allyl Addition to the C=N bond

Chiral allyl metal reagents:

- allyl silanes
- allyl boronates and boranes
- diastereoselective allyl metal additions to chiral imines (Cu, Zn, Zr, Pd, In mediated additions)

Stereochemistry

Allyl Silanes as Chiral Allylation Reagents

Mechanism: coordination of both imine nitrogen and acyl oxigen with Lewis Acidic silane

- J. Am. Chem. Soc. 2003, 125, 9596.
- J. Am. Chem. Soc. 2004, 126, 5686.

Allylboranes: Addition to C=N Bond

"9-BBDs contain a nearly ideal chiral pocket for the highly enantioselective allylation..."

J. Am. Chem. Soc. 2006, 128, 8712.

Asymmetric Allylboration of Cyclic Imines: BINOL Starring

Proposed transition states

entry	X	yield ^a (%)	ee ^b (%)
1	H (2a)	< 50	10
2	Me (2b)	94	75
3	I (2c)	87	77
4	CF ₃ (2d)	83	84
5	Ph (2e)	90	87
6	$4-\text{MeO}-\text{C}_6\text{H}_4-$ (2f)	94	88
7	$3,5-(CH_3)_2-C_6H_3-(2g)$	88	87
8	$3,5-(CF_3)_2-C_6H_3-(2\mathbf{h})$	92	95

^a Isolated yields after acid—base extraction. ^b Determined by chiral HPLC analysis of the trifluoroacetamide. Absolute configuration based on rotation.⁹

J. Amer. Chem. Soc. 2006, 128, 9646.

α -Aminoallylation of Aldehydes with Ammonia

J. Am. Chem.Soc. 2004, 126, 7182.

Zinc vs. Boron: Opposing Modes of Stereocontrol Depending on Chelation

$$N$$
 CO_2Me THF $72-100\%$ Ph Ph CO_2Me

M = Pb, Bi, Cu, Al, Zn: dr 97:3 to 100:0

M = B (triallylborane): dr 8:92

free rotation, re-face attack

Synlett, 2002, 651.

Title Paper: Asymmetric Allylboration of Acyl Imines

i-Pro +	Ph N H Ph	C ₆ H ₅ CH ₃	HN O Ph
4	5	π	6

entry	catalyst	mol % ^b	% yield ^c	er ^d
1			< 5	
2	7a	15	< 5	50:50
3	7b	15	< 5	55:45
4	7c	15	10	60:40
5	7d	15	51	50:50
6	7e	15	76	68:32
7	7 f	15	81	93:7
8	$7\mathbf{g}$	10	60	96.5:3.5
9	7 ň	15	85	96:4
10	7h	10	80	95:5
11	7h	5	60	90:10
12	7i	15	21	55:45

^a Reactions were run with 0.125 mmol of borane, 0.125 mmol of acyl imine, 15 mol % catalyst and in toluene (0.1 M) for 16 h under Ar, followed by flash chromatography on silica gel. ^b Catalyst concentration used relative to imine. ^c Isolated yield. ^d Enantiomeric ratios determined by chiral HPLC analysis.

Ph NOH EtO₂C (1S,2S)-7a (2R,3R)-7b(3S,5S)-7c(4S,5S)-7d HO' HO' .OH HO. (S)-**7e** X = H (S)-**7f** X = Br (S)-7h Ph OCH₃ (S)-7i

Asymmetric Allylboration of Acyl Imines: Solvent and Additive Effects

entry	solvent	additive	% yield ^b	er ^c
1	THF		32	58:42
2	Et ₂ O		28	60:20
3	CH_2Cl_2		75	92:8
4	$C_6H_5CH_3/C_6H_5CF_3$ (3:1)		77	92:8
5	$C_6H_5CH_3$		81	93:7
6	$C_6H_5CH_3$	3 Å molecular sieve	87	99:1
7	$C_6H_5CH_3$	4 Å molecular sieve	85	97:3
8	$C_6H_5CH_3$	5 Å molecular sieve	83	90:10

^a Reactions were run with 0.125 mmol of borane, 0.125 mmol of acyl imine, 15 mol % catalyst and in toluene (0.1 M) for 16 h under Ar, followed by flash chromatography on silica gel. ^b Isolated yield. ^c Enantiomeric ratios determined by chiral HPLC analysis.

Asymmetric Allylboration of Benzoyl Imines: Scope and Limitations

	Ph
	ОН
(S)-7h	Ph
(0, ,	

entry	R	product	% yield ^b	er ^c
1	Ph	9a	87	99:1
2	p-CH ₃ -C ₆ H ₄	9 b	83	98:2
3	p-Br-C ₆ H ₄	9c	86	97.5:2.5
4	<i>p</i> -CH ₃ O-C ₆ H ₄	9d	85	95:5
5^d	<i>p</i> -F-C ₆ H ₄	9e	94	98:2
6^d	o-F-C ₆ H ₄	9 f	91	95.5:4.5
7^d	m-CF ₃ -C ₆ H ₄	9g	89	97.5:2.5
8	$2-C_4H_3O$	9h	83	96:4
9	$2-C_4H_3S$	9i	81	95:5
10	2-naphthyl	9j	88	96:4
11	(E)-PhCH=CH	9k	82	95.5:4.5
12	$PhCH_2CH_2$	91	83	99.5:0.5
13	c-C ₆ H ₁₁	9m	80	98:2
14	t-Bu	9n	81	99.5:0.5
15	$BnOCH_2$	9o	84	96.5:3.5
16	(Z)-EtCH=CH(CH ₂) ₂	9p	82	95.5:4.5

Asymmetric Allylboration of Benzoyl Imines: What About Other Types of Imines?

entry	R	product	% yield ^b	er ^c
1	CH ₃ O	11a	13	57:43
2	t-BuO	11b	25	65:35
3	CH_2 = $CHCH_2O$	11c	41	65:35
4	CH_3	11d	52	70:30
5	p-(CH ₃) ₂ N-C ₆ H ₄	11e	76	97:3
6	<i>p</i> -CH ₃ O-C ₆ H ₄	11f	80	97.5:2.5
7	p-Br-C ₆ H ₄	11g	83	96.5:3.5
8	<i>p</i> -F-C ₆ H ₄	11h	84	97.5:2.5
9	p-NO ₂ -C ₆ H ₄	11i	92	99.5:0.5
10	o-F-C ₆ H ₄	11j	83	69:31
11	(E)-PhCH=CH	11k	82	95:5
12	c-C ₆ H ₁₁	111	83	97:3

Crotylboration of Acyl Imines

Removal of the N-Benzoyl Group:

J. Am. Chem. Soc. ASAP

Ph

HO,

(S)-7h

Mechanistic Studies: Boronate Ligand Exchange

Allylboronates are activated via exchange of the alkoxy boronate ligands:

- Using pinacol, ethylene glycol and 1,3-propanediol suffers from very slow reaction, low yields and stereoselectivity
- Diisopropoxy boronate gave best results

• The diol functionality of the catalyst is essential

entry	catalyst	mol % ^b	% yield ^c	er ^d
11	7h	5	60	90:10
12	7i	15	21	55:45

Mechanistic Studies: Spectroscopic Characterization of the Reaction

Enantiofacial Selectivity in Asymmetric Allylboration: Proposed Transition States

J. Am. Chem. Soc. ASAP

16

Conclusions

- Highly enantioselective allylboration of acyl imines catalysed by chiral BINOL-derived catalysts has developed
- The reaction is highly selective for both aryl and aliphatic acyl imines
- Crotyl boronates give the corresponding anti-products in high diasteroselectivity
- Mechanistic studies confirm ligand exchange between boronate and catalyst