Asymmetric Allylboration of Acyl Imines Catalyzed by Chiral Diols Sha Lou, Philip N. Moquist, Scott E. Schaus J. Am. Chem. Soc. ASAP Current literature Group Meeting Novembar, 24th 2007 Filip Petronijevic ### Chiral homoallylic amines as building blocks in sythesis Synthesis, **2005**, 2815. Org. Lett. **2000**, 2(13), 1847. J. Am. Chem. Soc. **1990**, 112. #### Allyl Addition to the C=N bond #### Chiral allyl metal reagents: - allyl silanes - allyl boronates and boranes - diastereoselective allyl metal additions to chiral imines (Cu, Zn, Zr, Pd, In mediated additions) ### **Stereochemistry** #### Allyl Silanes as Chiral Allylation Reagents Mechanism: coordination of both imine nitrogen and acyl oxigen with Lewis Acidic silane - J. Am. Chem. Soc. 2003, 125, 9596. - J. Am. Chem. Soc. 2004, 126, 5686. ### Allylboranes: Addition to C=N Bond "9-BBDs contain a nearly ideal chiral pocket for the highly enantioselective allylation..." J. Am. Chem. Soc. 2006, 128, 8712. ### **Asymmetric Allylboration of Cyclic Imines: BINOL Starring** #### Proposed transition states | entry | X | yield ^a (%) | ee ^b (%) | |-------|---|------------------------|---------------------| | 1 | H (2a) | < 50 | 10 | | 2 | Me (2b) | 94 | 75 | | 3 | I (2c) | 87 | 77 | | 4 | CF ₃ (2d) | 83 | 84 | | 5 | Ph (2e) | 90 | 87 | | 6 | $4-\text{MeO}-\text{C}_6\text{H}_4-$ (2f) | 94 | 88 | | 7 | $3,5-(CH_3)_2-C_6H_3-(2g)$ | 88 | 87 | | 8 | $3,5-(CF_3)_2-C_6H_3-(2\mathbf{h})$ | 92 | 95 | ^a Isolated yields after acid—base extraction. ^b Determined by chiral HPLC analysis of the trifluoroacetamide. Absolute configuration based on rotation.⁹ J. Amer. Chem. Soc. 2006, 128, 9646. #### α -Aminoallylation of Aldehydes with Ammonia J. Am. Chem.Soc. 2004, 126, 7182. # Zinc vs. Boron: Opposing Modes of Stereocontrol Depending on Chelation $$N$$ CO_2Me THF $72-100\%$ Ph Ph CO_2Me M = Pb, Bi, Cu, Al, Zn: dr 97:3 to 100:0 M = B (triallylborane): dr 8:92 free rotation, re-face attack Synlett, 2002, 651. #### **Title Paper: Asymmetric Allylboration of Acyl Imines** | i-Pro + | Ph
N
H Ph | C ₆ H ₅ CH ₃ | HN O Ph | |---------|-----------------|---|---------| | 4 | 5 | π | 6 | | entry | catalyst | mol % ^b | % yield ^c | er ^d | |-------|---------------|--------------------|----------------------|-----------------| | 1 | | | < 5 | | | 2 | 7a | 15 | < 5 | 50:50 | | 3 | 7b | 15 | < 5 | 55:45 | | 4 | 7c | 15 | 10 | 60:40 | | 5 | 7d | 15 | 51 | 50:50 | | 6 | 7e | 15 | 76 | 68:32 | | 7 | 7 f | 15 | 81 | 93:7 | | 8 | $7\mathbf{g}$ | 10 | 60 | 96.5:3.5 | | 9 | 7 ň | 15 | 85 | 96:4 | | 10 | 7h | 10 | 80 | 95:5 | | 11 | 7h | 5 | 60 | 90:10 | | 12 | 7i | 15 | 21 | 55:45 | ^a Reactions were run with 0.125 mmol of borane, 0.125 mmol of acyl imine, 15 mol % catalyst and in toluene (0.1 M) for 16 h under Ar, followed by flash chromatography on silica gel. ^b Catalyst concentration used relative to imine. ^c Isolated yield. ^d Enantiomeric ratios determined by chiral HPLC analysis. Ph NOH EtO₂C (1S,2S)-7a (2R,3R)-7b(3S,5S)-7c(4S,5S)-7d HO' HO' .OH HO. (S)-**7e** X = H (S)-**7f** X = Br (S)-7h Ph OCH₃ (S)-7i ### Asymmetric Allylboration of Acyl Imines: Solvent and Additive Effects | entry | solvent | additive | % yield ^b | er ^c | |-------|-------------------------------|---------------------|----------------------|-----------------| | 1 | THF | | 32 | 58:42 | | 2 | Et ₂ O | | 28 | 60:20 | | 3 | CH_2Cl_2 | | 75 | 92:8 | | 4 | $C_6H_5CH_3/C_6H_5CF_3$ (3:1) | | 77 | 92:8 | | 5 | $C_6H_5CH_3$ | | 81 | 93:7 | | 6 | $C_6H_5CH_3$ | 3 Å molecular sieve | 87 | 99:1 | | 7 | $C_6H_5CH_3$ | 4 Å molecular sieve | 85 | 97:3 | | 8 | $C_6H_5CH_3$ | 5 Å molecular sieve | 83 | 90:10 | ^a Reactions were run with 0.125 mmol of borane, 0.125 mmol of acyl imine, 15 mol % catalyst and in toluene (0.1 M) for 16 h under Ar, followed by flash chromatography on silica gel. ^b Isolated yield. ^c Enantiomeric ratios determined by chiral HPLC analysis. # Asymmetric Allylboration of Benzoyl Imines: Scope and Limitations | | Ph | |--------|----| | | ОН | | | | | (S)-7h | Ph | | (0, , | | | entry | R | product | % yield ^b | er ^c | |-------|---|------------|----------------------|-----------------| | 1 | Ph | 9a | 87 | 99:1 | | 2 | p-CH ₃ -C ₆ H ₄ | 9 b | 83 | 98:2 | | 3 | p-Br-C ₆ H ₄ | 9c | 86 | 97.5:2.5 | | 4 | <i>p</i> -CH ₃ O-C ₆ H ₄ | 9d | 85 | 95:5 | | 5^d | <i>p</i> -F-C ₆ H ₄ | 9e | 94 | 98:2 | | 6^d | o-F-C ₆ H ₄ | 9 f | 91 | 95.5:4.5 | | 7^d | m-CF ₃ -C ₆ H ₄ | 9g | 89 | 97.5:2.5 | | 8 | $2-C_4H_3O$ | 9h | 83 | 96:4 | | 9 | $2-C_4H_3S$ | 9i | 81 | 95:5 | | 10 | 2-naphthyl | 9j | 88 | 96:4 | | 11 | (E)-PhCH=CH | 9k | 82 | 95.5:4.5 | | 12 | $PhCH_2CH_2$ | 91 | 83 | 99.5:0.5 | | 13 | c-C ₆ H ₁₁ | 9m | 80 | 98:2 | | 14 | t-Bu | 9n | 81 | 99.5:0.5 | | 15 | $BnOCH_2$ | 9o | 84 | 96.5:3.5 | | 16 | (Z)-EtCH=CH(CH ₂) ₂ | 9p | 82 | 95.5:4.5 | ## Asymmetric Allylboration of Benzoyl Imines: What About Other Types of Imines? | entry | R | product | % yield ^b | er ^c | |-------|---|---------|----------------------|-----------------| | 1 | CH ₃ O | 11a | 13 | 57:43 | | 2 | t-BuO | 11b | 25 | 65:35 | | 3 | CH_2 = $CHCH_2O$ | 11c | 41 | 65:35 | | 4 | CH_3 | 11d | 52 | 70:30 | | 5 | p-(CH ₃) ₂ N-C ₆ H ₄ | 11e | 76 | 97:3 | | 6 | <i>p</i> -CH ₃ O-C ₆ H ₄ | 11f | 80 | 97.5:2.5 | | 7 | p-Br-C ₆ H ₄ | 11g | 83 | 96.5:3.5 | | 8 | <i>p</i> -F-C ₆ H ₄ | 11h | 84 | 97.5:2.5 | | 9 | p-NO ₂ -C ₆ H ₄ | 11i | 92 | 99.5:0.5 | | 10 | o-F-C ₆ H ₄ | 11j | 83 | 69:31 | | 11 | (E)-PhCH=CH | 11k | 82 | 95:5 | | 12 | c-C ₆ H ₁₁ | 111 | 83 | 97:3 | #### **Crotylboration of Acyl Imines** #### Removal of the N-Benzoyl Group: J. Am. Chem. Soc. ASAP Ph HO, (S)-7h #### **Mechanistic Studies: Boronate Ligand Exchange** Allylboronates are activated via exchange of the alkoxy boronate ligands: - Using pinacol, ethylene glycol and 1,3-propanediol suffers from very slow reaction, low yields and stereoselectivity - Diisopropoxy boronate gave best results • The diol functionality of the catalyst is essential | entry | catalyst | mol % ^b | % yield ^c | er ^d | |-------|----------|--------------------|----------------------|-----------------| | 11 | 7h | 5 | 60 | 90:10 | | 12 | 7i | 15 | 21 | 55:45 | ### **Mechanistic Studies: Spectroscopic Characterization of the Reaction** # **Enantiofacial Selectivity in Asymmetric Allylboration: Proposed Transition States** J. Am. Chem. Soc. ASAP 16 #### **Conclusions** - Highly enantioselective allylboration of acyl imines catalysed by chiral BINOL-derived catalysts has developed - The reaction is highly selective for both aryl and aliphatic acyl imines - Crotyl boronates give the corresponding anti-products in high diasteroselectivity - Mechanistic studies confirm ligand exchange between boronate and catalyst