Nineteen-step Total Synthesis of (+) - Phorbol

Shuhei Kawamura, Hang Chu, Jakob Felding, and Phil Baran

(1) Cyclase Phase

(2) Oxidase Phase

Advanced Intermediate [1]

(+) - Phorbol ${ }^{[2]}$

April 09, 2016

Phorbol Background

- Phorbol and phorbol derivatives are members of the tigliane diterpenoid family.
- The tigliane diterpenoid family are isolated from the Euphorbiaceae and the Thymelaeaceae family members ${ }^{1 .}$ Structural elucidation was confirmed by Xray crystallography of a phorbol derivative in $1967{ }^{2}$.

- Phorbol derivatives are isolated as mixed esters, most commonly existing as 12,13 or 13,20-diesters.
[1] Arch. Exp. Pathol. Pharmakol. 1935, 177, 212.
[2] Angew. Chem. Int. Ed. Engl. 1967, 6, 809.

Protein Kinase C (PKC) Activation and Tumor Promotion

- As a downstream effector of G-protein coupled receptors and receptor tyrosine kinases, PKC propagates important signaling events.
- Deregulation of PKC has been associated with multiple cancer-promoting pathways, which can lead to an array of adverse phenotypes.
- Therefore, PKC has been implicated in the development and progression of disease.
- PKC is commonly activated by second messenger molecule 1,2-diacylglycol (DAG) at the cellular surface.
- Phorbol esters have been shown to strongly activate PKC and potently promote tumor development - tetradocecanoyl phorbol acetate is active at 20 nM . Paradoxically, deoxygenated derivatives can inhibit tumor formation; therefore, synthesis of phorbol and phorbol derivatives may provide therapeutically active agents toward the treatment of cancer.

[1] Nature Review 2011, 11, 937.
[2] J. Bio. Chem. 2000, 275, 12136.

Efforts toward the synthesis of Phorbol

- Paul Wender and co-workers:

Racemic total synthesis, 52 steps, 0.16% overall yield ${ }^{1}$
Racemic formal synthesis, 42 steps, 0.02% overall yield ${ }^{3}$
Asymmetric formal synthesis; 36 steps, 1.2\% overall yield ${ }^{4}$

- Jin Kun Cha and co-workers:

Asymmetric formal synthesis, 43 steps, 0.4% overall yield ${ }^{5}$

- Work from the labs of Shibasaki, Wilson, Rigby, Harwood, Little, Page, Dauben, McMills, Paquette, Singh, Ovaska, West, Evans, Li, and others.

A-B-C-D, B-C-D, A-B-C skeletal components

[1] J. Am. Chem. Soc. 1989, 111, 8954. [2] J. Am. Chem. Soc. 1989, 111, 8957
[3] J. Am. Chem. Soc. 1990, 112, 4956. [4] J. Am. Chem. Soc. 1997, 119, 7897.
[5] J. Am. Chem. Soc. 2001, 123, 5590.

2:1 E/Z

$$
\text { Tet. Lett. 1989, 30, } 5073 .
$$

Dauben Lab - carbonyl ylide cycloaddition

Paquette Lab - anionic oxy-Cope

Tet. 1994, 50, 4071.

Wender's racemic total synthesis

[1] J. Am. Chem. Soc. 1989, 111, 8954
[2] J. Am. Chem. Soc. 1989, 111, 8957.

Wender's racemic formal synthesis

Phorbol
42 steps
.02\% Total yield
[1] J. Am. Chem. Soc. 1990, 112, 4956.

Wender's asymmetric formal synthesis

[3] J. Am. Chem. Soc. 1997, 119, 7897.

Current work: Two phase synthetic strategy

(1) Cyclase Phase

Advanced Intermediate
LEO Pharmaceutics
> 100 grams
[1] Science 2013, 341, 878.
[2] Nature 2016, $0,1$.

(2) Oxidase Phase

(2) Oxidase Phase

Notable steps: C-H Activation

C-H Activation Considerations

- Steric shielding of C6, C7, C8, and C11.
- Higher s-character of tertiary cyclopropane C-H bonds (C13/C14).
- Compared to the remaining carbon centers, C ${ }^{13}$ NMR suggests C12 is the most nucleophilic position.
- Hyperconjugation from the pi-like cyclopropane system should facilitate oxidation.

Eq. vs Ax. Considerations

- Activation by cyclopropane occurs through electron donation of its C-C σ bonding orbital to neighboring C-H σ antibonding orbitals.

- Proper orbital overlap is required in order for activation through cyclopropane hyperconjugation.
- Hindered C-H bonds can experience reduced rates of
 oxidation.

Notable steps: 1,2 -Diketone

0.103 g scale

Evaluated conditions were reported by The Baran Laboratory Blog:

PCC or PDC, MS4A, DCM, 0 C or rt, not scalable ($<1 \mathrm{mg}$), nonreproducible PCC or PDC, Celite, DCM, O C or rt,not clean, not scalable, nonreproducible PCC or PDC, AI2O3 (neutral or basic), DCM, 0 C or rt, not clean PCC or PDC, SiO2, DCM, clean but different product
PCC or PDC, Fluorisil, DCM, not scalable, nonreproducible
IBX, DMSO, rt, 40 C or 60C, not clean, slow
TFAA, DMSO, Et3N, DCM, -78 C to rt, alpha-hydroxyketone (low conversion) PySO3, DMSO, Et3N, DCM, 0 C to rt, no reaction
DMP, DCM, no reaction at rt, complex mixture at 40 C
4-acetamido TEMPO, PTSA, DCM, 0 C to rt, no reaction
TPAP, NMO, MS4A, DCM, no desired product
CrO3, 3,5-DMP, DCM, 0 C to rt, diketone, not clean
OsO4 (in t-BuOH), DCE, 40 C, then, TBHP, DCE, no reaction
OsCl3, oxone, NaHCO 3 , EtOAc/MeCN/water (6:6:1), no reaction
OsCl3, oxone, EtOAc, water, no reaction
$\mathrm{KMnO} 4, \mathrm{Ac} 2 \mathrm{O}, 0 \mathrm{C}$ to rt, epoxide (quant)
KMnO4, MeCN, rt or 60 C , no reaction
KMnO 4 , acetone, rt or 60 C , no reaction
KMnO4, MeCN, then left on TLC, SM, diketone, alpha-hydroxyketone, epoxide $\mathrm{KMnO} 4, \mathrm{SiO} 2$, MeCN , no reaction
KMnO4, CuSO4, DCM/water, no reaction
KMnO4, CuSO4, DCM/t-BuOH/water, epoxide
KMnO4, t-BuOH, no reaction
$\mathrm{KMnO4}$, acetone/AcOH/H2O, no reaction
$\mathrm{KMnO} 4, \mathrm{AC} 2 \mathrm{O} / \mathrm{MeCN}$, expoxide

RuCl3, oxone, NaHCO3, EtOAc/MeCN/water (6:6:1), 0 C, rt, 40 C , or 60 C , alphahydroxykeone, diketone, not clean RuCl3, NalO4, NaHCO3, EtOAc/MeCN/water (6:6:1), not clean
RuCl3, oxone, NaHCO3, EtOAc//water (6:1), not clean
RuCl3, oxone, $\mathrm{NaHCO} 3, \mathrm{tBuOH} / \mathrm{MeCN} /$ water (6:6:1), not clean
RuCl3, oxone, $\mathrm{NaHCO} 3, \mathrm{DCM} / \mathrm{MeCN} /$ water $(6: 6: 1)$, not clean
RuCl3, oxone, NaHCO3, diethylcarbonate/MeCN/water (6:6:1), alpha-hydroxyketone, diketone RuCl 3 , oxone, NaHCO , EtOAc/acetone/water ($6: 6: 1$), alpha-hydoxyketone, diketone RuCl3, oxone, NaHCO 3 , EtOAc/MeCN/water (6:6:1), alpha-hydroxyketone, diketone
RuCl3, oxone, NaHCO3 (excess), EtOAc/MeCN/water (6:6:1), slow, alpha-hydroxyketone, diketone RuCl3, oxone, NaHCO3, EtOAc/acetone/water (6:6:1), alpha-hydoxyketone, diketone RuCl3, oxone, NaHCO , EtOAc/MeCN/water ($1: 1: 1$), not clean
RuCl3, oxone, NaHCO , $\mathrm{EtOAc} / \mathrm{MeCN} /$ water ($36: 36: 1$), diketone (0.5 mg scale, quant.), not scalable
RuCl3, oxone, NaHCO3, EtOAc/MeCN/water (36:36:1), reagents made first, fast, slightly messier
RuCl3, oxone, NaHCO 3 , EtOAc/acetone/water (36:36:1), alpha-hydroxyketone, diketone, not clean RuCl3, oxone, EtOAc/MeCN/water (72:72:1), not clean

RuCl 3 , oxone, NaHCO 3 , $\mathrm{EtOAc} / \mathrm{MeCN} /$ water ($6: 6: 1$), alpha-hydroxyketone, diketone, not clean, not scalable RuCl3, oxone, NaHCO3, EtOAc/MeCN/water (6:6:1), -20 C to -15 C, diol, alpha-hydroxyketone RuCl3, oxone, $\mathrm{NaHCO} 3, \mathrm{EtOAc} / \mathrm{MeCN} /$ water (6:6:1), 0 C, diol, alpha-hydroxyketone, diketone RuCl3 (excess), oxone, NaHCO 3 , $\mathrm{EtOAc} / \mathrm{MeCN} /$ water (6:6:1), diketone (major), alpha-hydroxyketone RuCl3 (excess), oxone (excess), NaHCO 3 , EtOAc/MeCN/water (6:6:1), diketone, not scalable, nonreproducible RuCl3, $\mathrm{NaIO4,NaHCO3}, \mathrm{EtOAc/MeCN/water} \mathrm{(6:6:1)}$,0 C , no desired product
RuCl3, oxone, $\mathrm{NaHCO} 3, \mathrm{EtOAc} /$ water $(3: 1)$, complex mixture
RuCl3, $\mathrm{NaBrO3}$, $\mathrm{NaHCO} 3, \mathrm{EtOAc} / \mathrm{MeCN} /$ water ($6: 6: 1$), 0.001 M , diketone (quant.)
RuCl3, $\mathrm{NaBrO3}, \mathrm{NaHCO} 3, \mathrm{EtOAc} / \mathrm{MeCN} /$ water ($6: 6: 1$), 0.004 M , diketone, slightly messier than 0.001 M RuCl3, NaBrO3, NaHCO3, EtOAc/MeCN/water (6:6:1), 0.008 M , slow, diketone, slightlymessier than 0.001 M RuCl3, NaBrO3, NaHCO3, EtOAc/MeCN/water (6:6:1), 0.01 M , slow, not clean, diketone, low conversion RuCl3, $\mathrm{NaBrO3}, \mathrm{NaHCO} 3, \mathrm{EtOAc} / \mathrm{MeCN} /$ water ($6: 6: 1$), 0.02 M , slow, not clean, diketone, low conversion $\mathrm{RuCl} 3, \mathrm{NaBrO3}, \mathrm{NaHCO} 3, \mathrm{EtOAc} / \mathrm{MeCN} /$ water (6:6:1), 0.001 M , low conversion, diketone

Notable steps: Reforming the cyclopropane ring

[^0]

Notable steps: Reforming the cyclopropane ring

64\%

Desired product

Synthetic

Advanced Intermediate [1]

(+) - Phorbol ${ }^{[2]}$

Conclusions

- Accomplished an enantiospecific total synthesis of (+) - Phorbol in 19 steps.
- Demonstrated an effective, symbiotic relationship between an academic organic chemist and a pharmaceutical company in a collaborative pursuit toward a complex natural product synthesis.

[^0]: Alternative product

