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Phorbol Background 
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§  Phorbol and phorbol derivatives are members of the tigliane diterpenoid 
family.  

 
§  The tigliane diterpenoid family are isolated from the Euphorbiaceae and the 

Thymelaeaceae family members 1. Structural elucidation was confirmed by X-
ray crystallography of a phorbol derivative in 1967 2.   

 
Structural characteristics: 

§  Tigliane diterpenoids have a 5/7/6/3- tetracyclic ring system consisting of a 
five-membered ring (A), a seven-membered ring (B), a six-membered ring 
(C), and a cyclopropane system (D).  

§  Phorbol  has a polyhydroxylated tigliane carbon skeleton that contains eight 
contiguous asymmetric centers, six of which are sited around the six-
membered C ring. 

 
§  Phorbol derivatives are isolated as mixed esters, most commonly existing as 

12,13 or 13,20-diesters.  
 

[1] Arch. Exp. Pathol. Pharmakol. 1935, 177, 212.  
[2]  Angew. Chem. Int. Ed. Engl. 1967, 6, 809. 
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§  As a downstream effector of G-protein coupled 
receptors and receptor tyrosine kinases, PKC 
propagates important signaling events. 

 
§  Deregulation of PKC has been associated with 

multiple cancer-promoting pathways, which can 
lead to an array of adverse phenotypes.  

 
§  Therefore, PKC has been implicated in the 

development and progression of disease. 

§  PKC is commonly activated by second 
messenger molecule 1,2-diacylglycol (DAG) at 
the cellular surface. 

§  Phorbol esters have been shown to strongly 
activate PKC and potently promote tumor 
development - tetradocecanoyl phorbol acetate is 
active at 20 nM. Paradoxically, deoxygenated 
derivatives can inhibit tumor formation; therefore, 
synthesis of phorbol and phorbol derivatives may 
provide therapeutically active agents toward the 
treatment of cancer.  
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[1] Nature Review 2011, 11, 937.  
[2]  J. Bio. Chem. 2000, 275, 12136. 
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Efforts toward the synthesis of Phorbol 

§  Paul Wender and co-workers: 

Racemic total synthesis, 52 steps, 0.16% overall yield 1 
 
Racemic formal synthesis, 42 steps, 0.02% overall yield 3 
 
Asymmetric formal synthesis; 36 steps, 1.2% overall yield 4  

 
 
§  Jin Kun Cha and co-workers:  
 

Asymmetric formal synthesis, 43 steps, 0.4% overall yield 5 
 
 
 
§  Work from the labs of Shibasaki, Wilson, Rigby, Harwood, Little, 

Page, Dauben, McMills, Paquette, Singh, Ovaska, West, Evans, 
Li, and others.  

A-B-C-D, B-C-D, A-B-C skeletal components 

[1] J. Am. Chem. Soc. 1989, 111, 8954. [2] J. Am. Chem. Soc. 1989, 111, 8957. 
[3] J. Am. Chem. Soc. 1990, 112, 4956. [4] J. Am. Chem. Soc. 1997, 119, 7897. 
[5] J. Am. Chem. Soc. 2001, 123, 5590. 
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Rigby Lab – [4+2] cycloaddition 

J. Org. Chem. 1993, 58, 7635. 
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Wender’s racemic total synthesis 
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Wender’s racemic formal synthesis 
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B and C ring 
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[3] J. Am. Chem. Soc. 1997, 119, 7897. 
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Current work: Two phase synthetic strategy 
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[1] Science 2013, 341, 878. 
[2] Nature 2016, 0, 1.  
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Notable steps: C-H Activation 

C-H Activation Considerations 
 
§  Steric shielding of C6, C7, 

C8, and C11. 

§  Higher s-character of tertiary 
cyclopropane C-H bonds  
(C13/C14).  

 
§  Compared to the remaining 

carbon centers, C13 NMR 
suggests C12 is the most 
nucleophilic position. 

§  Hyperconjugation from the 
pi-like cyclopropane system 
should facilitate oxidation. 
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Eq. vs Ax. Considerations 

§  Activation by cyclopropane 
occurs through electron 
donation of its C-C σ 
bonding orbital to neighboring 
C-H σ antibonding orbitals.   

 
§  Proper orbital overlap is 

required in order for activation 
through cyclopropane 
hyperconjugation. 

 
§  Hindered C-H bonds can 

experience reduced rates of 
oxidation. 

Angew. Chem. Int. Ed. 2011,50, 3362.  
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Conclusions 
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§  Accomplished an enantiospecific total synthesis of (+) – Phorbol in 19 steps. 

§  Demonstrated an effective, symbiotic relationship between an academic organic 
chemist and a pharmaceutical company in a collaborative pursuit toward a complex 
natural product synthesis.  
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