A Novel 1,2-Migration of Acyloxy, Phosphatoxy, and Sulfonyloxy Groups in Allenes: Efficient Synthesis of Triand Tetrasubstituted Furans

Gevorgyan and Co-workers

Angew. Chem. Int. Ed. 2004, 43, 2280

$$R_1$$
 R_2
 R_1
 R_2
 R_3
 R_1
 R_2
 R_3
 R_4
 R_2

The 1,2-Acyloxy Rearrangement

- -Reaction acceleration by electron-withdrawing R groups.
- -Reaction accelerated by polar solvents including water.

-Intermediate ruled out based on its reactivity (facile ring opening) as well as calculations.

> J. Org. Chem. 1988, 53, 464 J. Am. Chem. Soc. 1982, 104, 4399 J. Am. Chem. Soc. 1984, 106, 1793 Calculations: J. Am. Chem. Soc. 1984, 106, 5119

Radical Acyloxy Rearrangement Mechanistic Analysis

- -Fragmentation would result in D scrambline across four carbons, whereas a non dissociative pathway would distribute it across two.
- -Labeling experiments suggest a non-dissociative rearrangement.

J. Am. Chem. Soc. 1994, 116, 2631

The 1,2-Acyloxy Rearrangement in Carbohydrate Chemistry

- -Reactions can be initiated thermally or photolytically.
- -Yields variable (40-60%) and reduced radical or elimination products are the balance of the products.

Tetrahedron Lett. **1995**, 36, 3867 J. Org. Chem. **2003**, 68, 2006

The 1,2-Acyloxy Rearrangement in Carbohydrate Chemistry

-Rearrangment to secondary radical

-Sulfur gives only reduced anomeric radical

-The stabilized anomeric radical will undergo rearrangement to the less stable secondary radical. Why? Calculations indicate a net gain in energy (~ 17 kcal/mol) for the molecule if a second C-O bond in made at an oxygen bearing carbon.

J. Org. Chem. 1988, 53, 4364

Calculations: J. Am. Chem. Soc. 1985, 107,6393

A Unique 1,2 Acyloxy Rearrangement

$$\begin{array}{c} AcO \\ C_5H_{11} \end{array} \begin{array}{c} (3,3) \\ C_5H_{11$$

-A alkynyl-allenyl isomerization, metal-promoted closure of the furanoid ring, and additionelimination to effect a net 1,2-acyloxy rearrangement.

Synthesis of Trisubstituted Furans

Substrate			t [h]	Product	Yield [%] ^[b]	
PhCOO	Ph O	5 a	22	PhCOO Ph	4a	82 ^k l
MeCOO	Ph O	5 b	1	MeCOO Ph	4b	81
EtCOO Me	Ph O	5 c	9	EICOO Ph	4c	69
/PrCOO	Ph (O	5 d	2	/PrCOO	4 d	90
fBuCOO	Ph O	5 e	17	/Buccoo Me O Ph	4 e	86
PhCOO > C ₅ H ₁ .	Ph O	5 f	23	PhCOO C ₆ H ₁₁ O Ph	4 f	80
(BuCOO) C ₅ H ₁₁	O LBn	5 g	32	18.1COO C ₅ H ₁₁ O /BL	4 g	80
PhCOOOIBS	Ph (O	5 h	46	PhCOO TBSO Ph	4h	83 ^{k.d} l

[[]a] All reactions carried out on a 1-mmol scale. [b] Yields of isolated products, [c] Reactions carried out at $80\,^\circ\text{C}$. [d] TBS – tert-butyldimethyl-

-Selectivities are best with phenyl and t-butyl ketones. -Reactions carried out at room temperature unless otherwise noted.

Expansion to Tetrasubstituted Furans

$$R^{1} = R^{2}$$

$$R^{1} = R^{3}$$

$$R^{1} = R^{3}$$

$$R^{1} = R^{3}$$

$$R^{1} = R^{3}$$

-Acess the allenyl intermediate by a [3,3] rearrangement of an α -acetoxy alkynyl ketone. -1,2-Acyloxy rearrangement and cycolisomerization should proceed from the allene.

-The result....

The Sythesis of Tetrasubstituted Furans

	Substrate		t [min]	Product		Yield [%] ^{‡)}
rBu−	OAc Ph	8 a	2	ACO Ph	10 a	> 99
/Bu-	OAc Ph O Me	8 b	15	AcO Ph	10 b	73
∕Bu=	OAc Me O Ph	8 c	15	AcO Me	10 c	84
/Bu	OAc Me O Me	8 d	75	AcO Me	10 d	90
/Bu	AcQ — †	8 e	10	AcO (Bu O	10 e	86

[[]a] Reactions carried out on a 1-mmol scale. [b] Yields of isolated products.

- -Reactions proceed at room temperature in the presence of 5 mol% AgBF₄.
- -Reaction still limited at the terminal position of the alkyne.

Heteroatomic Migrating Groups in the Synthesis of Tetrasubstituted Furans

-Phosphorous analogues require heating, but yields of furans are presumable still good.

-Attempted synthesis of 14 gave 15, which underwent furan formation in good yield.

Conclusions

-A new "polar" 1,2 acyloxy rearrangement was discovered with allows access to tri- and tetrasubstituted furans.

-These furans bear oxygenationat the 3-position, but the scope is somewhat limited to phenyl and tert-butyl ketones.

-Further development could render this method quite attractive in the context of natural product synthesis and/or combinatorial library development.

$$R_1$$
 R_2
 R_1
 R_2
 R_3
 R_1
 R_2
 R_3
 R_4
 R_2