
Claire Coleman Current Lit. July 24 2004

Ligand-, Copper-, and Amine-Free Sonogashira Reaction of Aryl Iodides and Bromides with Terminal Alkynes

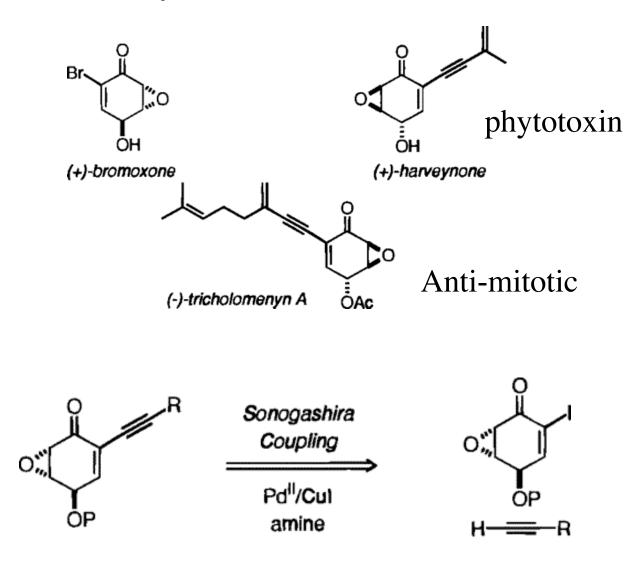
Sameer Urgaonkar and John G. Verkade Department of Chemistry, Gilman Hall, Iowa State University

The Sonogashira Coupling

Overall elimination of HX. Occurs via organocuprates:

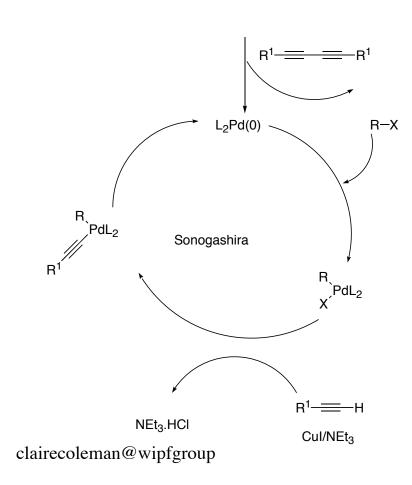
Sonogashira et al, Tett. Lett 1975, 4467. clairecoleman@wipfgroup

Uses of the Sonogashira Coupling

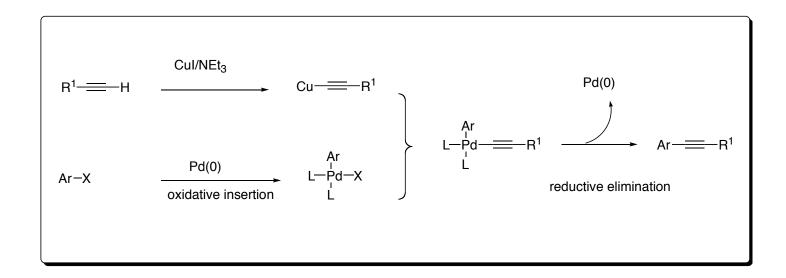

Extensively used in organic synthesis

Liquid Crystalline materials

Conducting Polymers

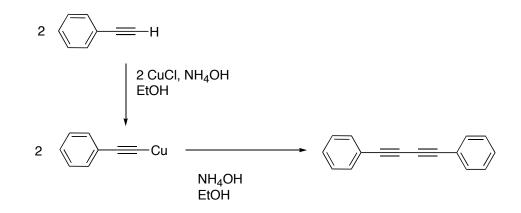

Natural Product Synthesis

The Sonogashia Reaction is often the key step in Natural Product Synthesis



J. Org. Chem, 1997, 62, 1582.

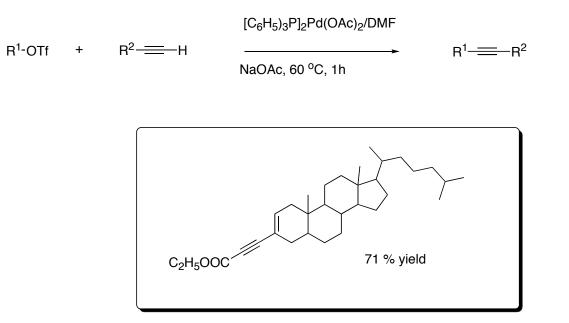
The Catalytic Cycle



The Catalytic Cycle

Problem-Side Reaction

In the presence of Cu(I) cocatalyst-----Glaser type oxidative dimerisation of the alkyne


To address this several reports described Copper free Sonogashira Couplings Ideally a ligandless, copperless and amine free process would improve Sonogashira couplings by

Cheaper: Avoid the use of expensive and sensitive ligands

Enviromentally Friendly: No disposal of large quantities of amines for industrial purposes

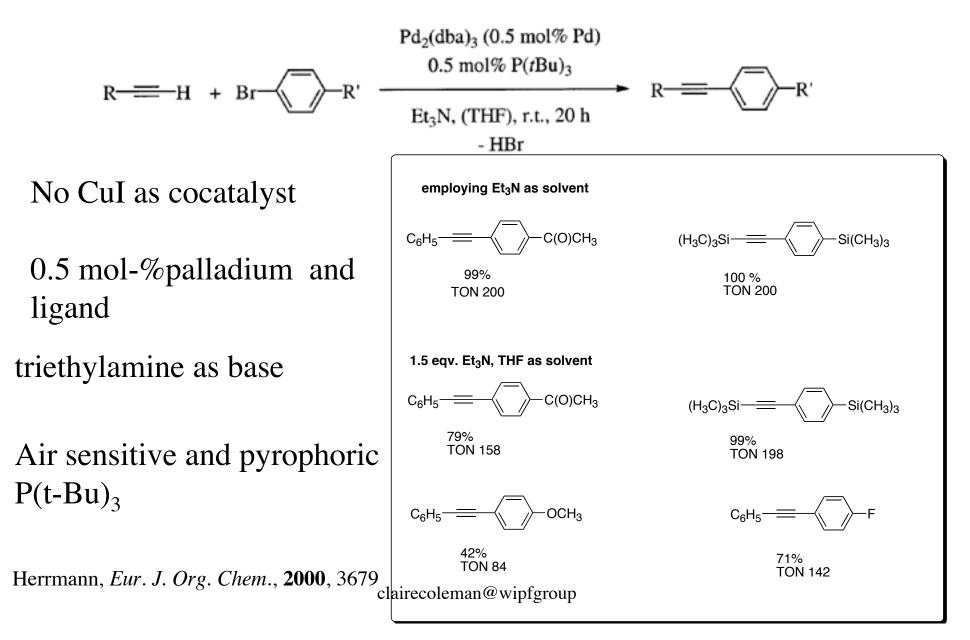
Higher Yields: Avoid Glasier dimerisations

Coupling of Enol Triflates with Terminal Alkynes under Copper Free conditions

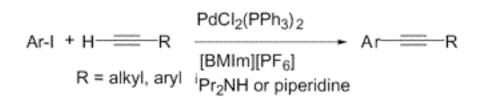
Using phosphine ligated palladium precursor 2 examples that were copper and amine free

clairecoleman@wipfgroup

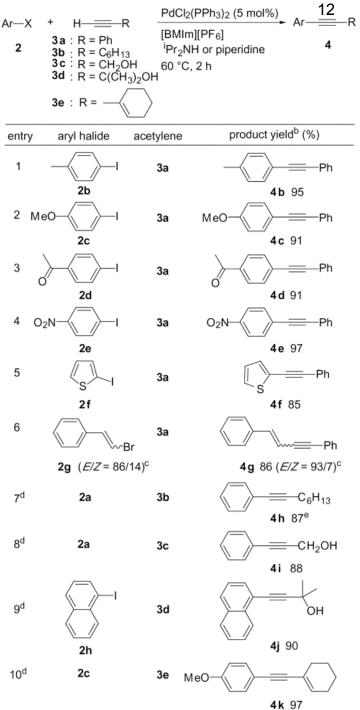
Cacci et al Synthesis, 1986, 320.


Phosphine and Copper Free Sonogashira Coupling

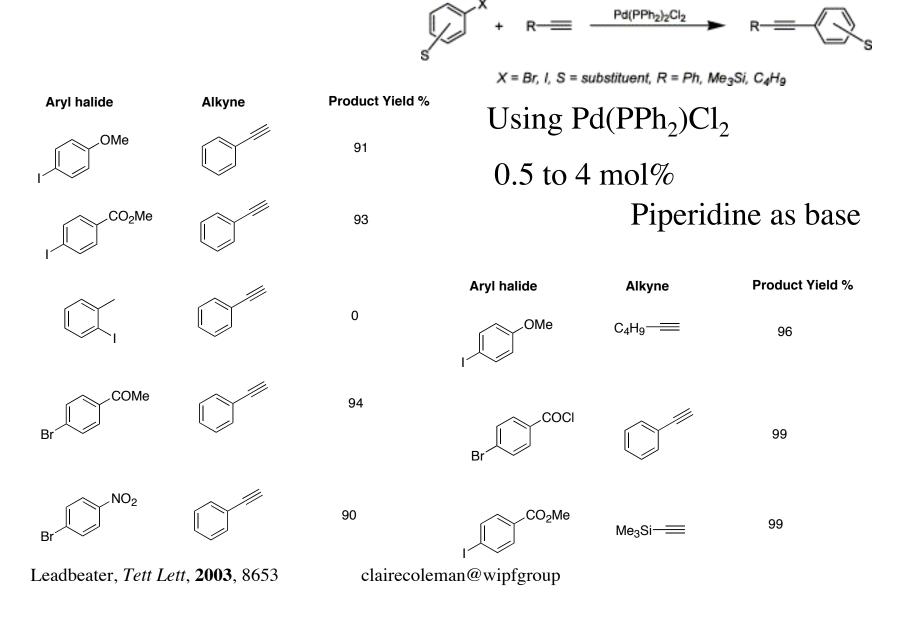
Coupling of a vinyl iodide and terminal alkyne 1 example


But still required amine

clairecoleman@wipfgroup Linstrumelle et al, Tett Lett, **1993**, 6403


Copper free, Palladium catalysed Sonogashira reaction of aryl bromides with terminal alkynes at rt.

Copper free Sonogashira Coupling Of aryl iodides in Ionic Liquids


Extracted products with hexane from catalyst Washed ionic layer with water to remove Ammonium salts Ionic liquid with Pd catalyst could be reused

Ryu, Org. Lett, 2002, 1691.

clairecoleman@wipfgrour 10^d

Copper free Sonogashira Couplings of aryl iodides and activated aryl bromides

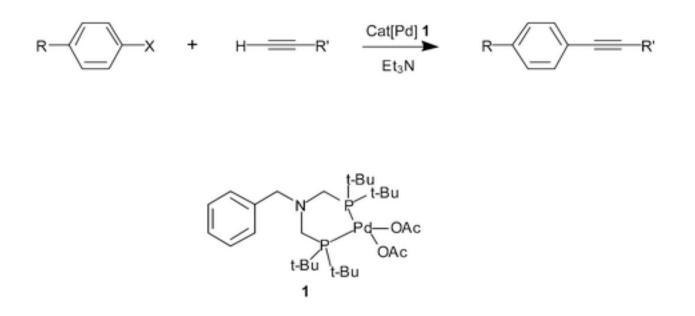
$$\sum_{s} X + R = - - R =$$

X = Br, I, S = substituent, R = Ph, Me_3Si , C_6H_9

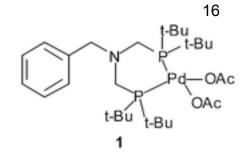
Entry	Aryl halide	Alkyne	Yield (%)	Entry	Aryl halide	Alkyne	Yield (%)
1	, COMe	⊘-=	91 ^b	12	Br COCI	⊘-=	99°
2	Соме	\bigcirc —	93 ^b	13	L) CM6	\bigcirc —	79 ⁴
3	,C	⊘	94 ⁶	14	,CY	⊘	72 ⁴
4	α	∽	٥ ٢	15	COMe	⊘	96 '
5		⊘-=	96 ^k	16	, CO ^{CMe}	Me;81	99 °
6	рон	⊘	92 ^b	17	, C) ^{CMa}	с,н,—	961
7		⊘-=	99 ^b	18	,C	MagSi	99°
8	С	⊘	99 ^b	19	СССОН	Me ₂ 6i	40*
9	Br	⊘	94 °	20	Br	Me ₂ S I ====	75°
10	Br NO2	∽-=	90°	21		Me ₂ S i	28 ^d
11	в СССКО	⊘-=	74°	22	C CM0	⊘-=	99 *

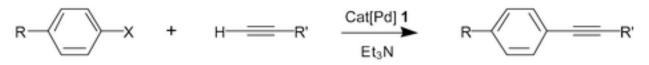
a) Reactions were run using 1 mmol aryl halide, 1 mmol phenylacetylene, 3 mmol piperidine. The reaction mixture was placed in a pre-beated oil bath at 70 °C and held there for the allotted time

b) 2 mol % Pd(PPh₃)₂Cl₂ reaction time of 10 min


c) 4 mol % Pd(PPh3)2Cl2 reaction time of 10 min

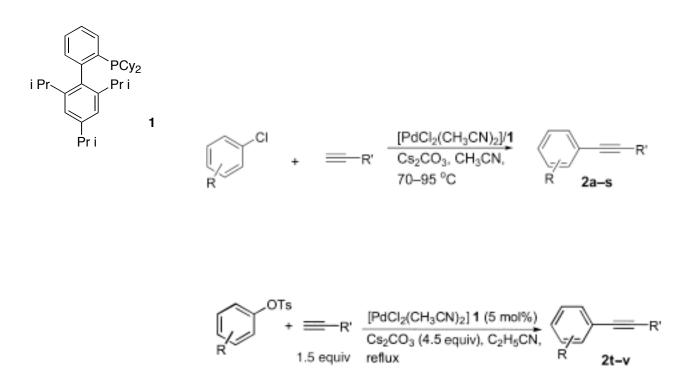
d) 0.5 mol % Pd(PPhi)-Cl- reaction time of 20 min


e) 2 mol % Pd(PPh_); Cl₂ reaction time of 10 min


f) Run on 10 mmol scale. 2 mol % Pd(PPh₃)₂Cl₂ reaction time of 10 min.

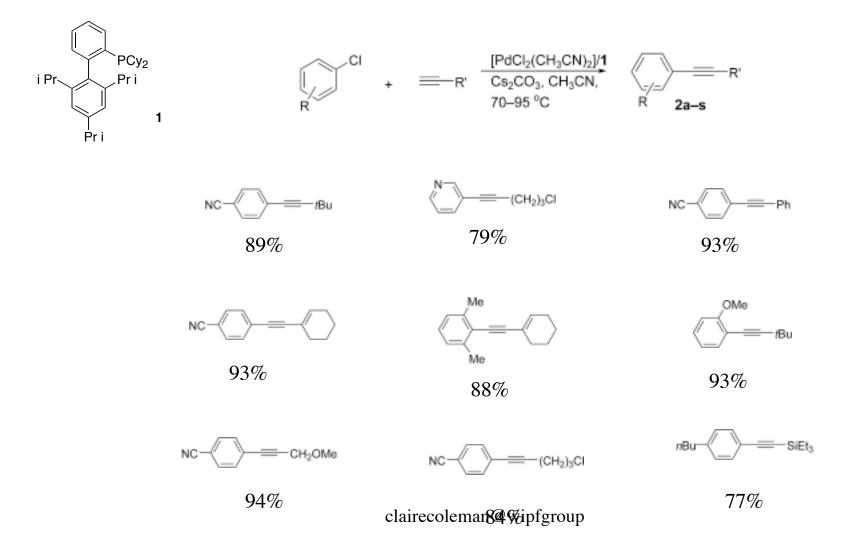
Copper free Palladium catalyst for reaction with aryl halides

Have to synthesise the ligand, but works with some aryl chlorides

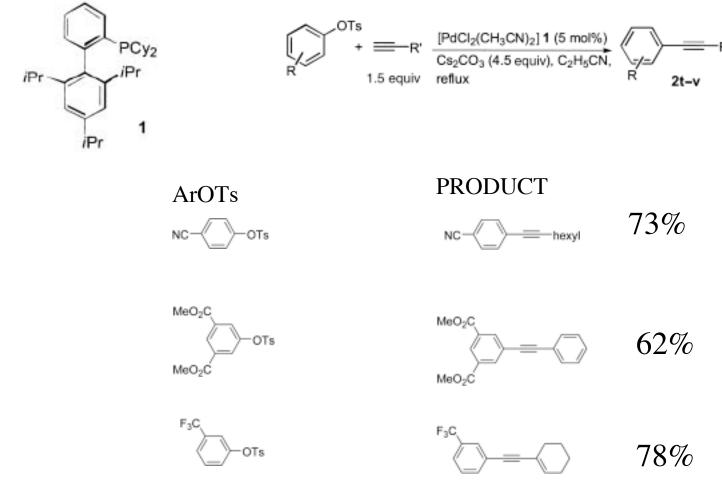


Fable 1 Reactions conditions, conversions and turnover numbers (TON) for the Sonogashira coupling of aryl halides with alkynes using 1 as the sole :atalyst^a

Entry	x	R	R′	Temperatu	Catalyst 1 ire/°C (mol%)	React. time	Conv. (%) ^b	TON
1	Ι	Н	C ₆ H ₅	80	1	15 min	100	100
2	Ι	Н	C_6H_5	25	1	30 min	100	100
3	Ι	Н	C ₆ H ₅	-20	1	1 d	70	70
4	Ι	Н	C_6H_5	-40	1	2 d	51	51
5	Ι	Н	$Si(CH_3)_3$	25	1	8 h	76	76
6	Ι	Н	C ₆ H ₅	80	0.5	15 min	100	200
7	Ι	Н	C ₆ H ₅	80	0.1	2 h	100	1000
8	Ι	Н	C ₆ H ₅	80	0.01	1 d	87	8700
9	Ι	Н	C ₆ H ₅	80	0.001	7 d	71	71000
10	Br	Н	C ₆ H ₅	80	1	20 min	100	100
11	Br	Н	C ₆ H ₅	25	1	1 h	100	100
12	Br	Me	C ₆ H ₅	80	1	3 h	96	96
13	Br	Н	Si(CH ₃) ₃	25	1	15 h	54	54
14	Cl	Н	C ₆ H ₅	80	1	50 min	4	4
15	Cl	Н	C ₆ H ₅	25	1	3 h	9	9
16	Cl	Н	Si(CH ₃) ₃	25	1	2 d	5	5
17	Cl	CN	C ₆ H ₅	80	1	5 d	13	13
18	Cl	F	C ₆ H ₅	80	1	5 d	14	14
19	Cl	$COOCH_3$	C ₆ H ₅	25	1	3 d	15	15
20	Cl	COOCH ₃	C ₆ H ₅	80	2	3 d	30	30
21	Cl	COOCH ₃	C ₆ H ₅	40	1	3 d	22	22
Reaction conditions: and halide (2 mmol) alkune (3 mmol) Et.N (6 mL) ^b Unontimized isolated yield								


'Reaction conditions: aryl halide (2 mmol), alkyne (3 mmol), Et₃N (6 mL).^b Unoptimized isolated yield.

Coupling of aryl Chlorides and Aryl tsoylates with terminal alkynes using a bulky phosphine ligand under copper and amine free conditions

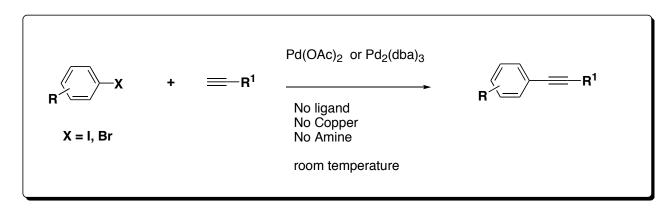


Buchwald, Angewandte, Int. Ed., 2003, 42, 5993. clairecoleman@wipfgroup

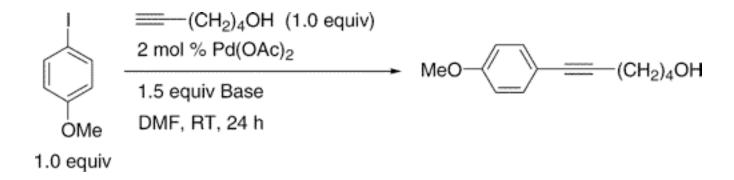
Coupling of aryl Chlorides and Aryl tsoylates with terminal alkynes using a bulky phosphine ligand under copper and amine free conditions

First report of Sonogashira couplings of aryl tsoylates

clairecoleman@wipfgroup

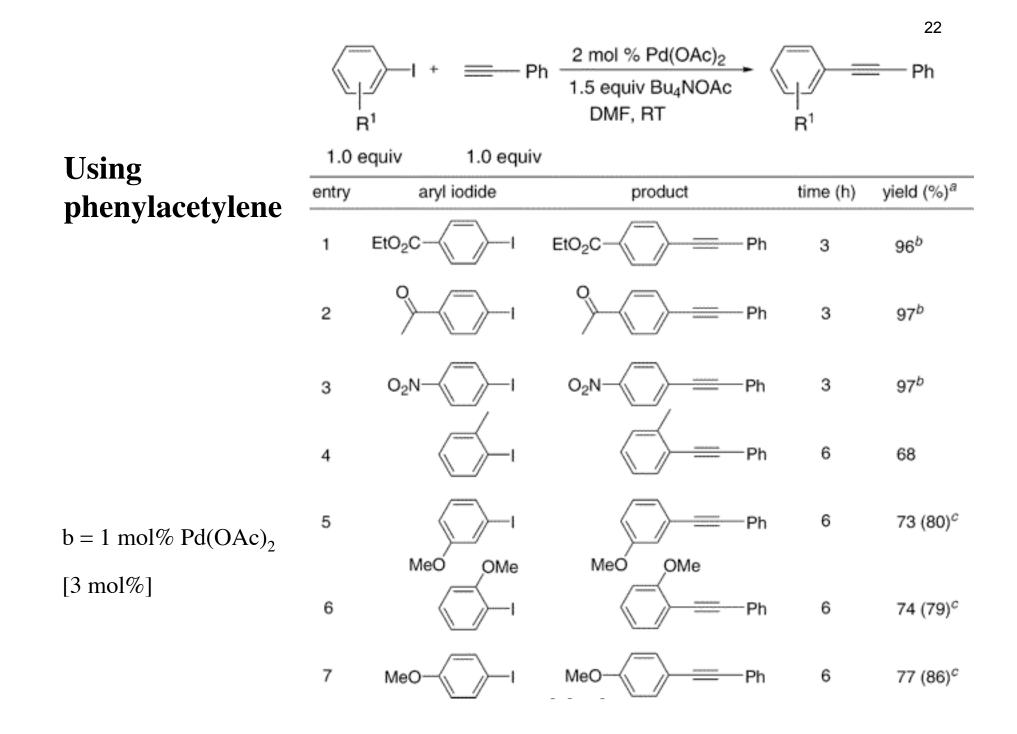

Buchwald, Angewandte, Int. Ed., 2003, 42, 5993.

First report of a ligand, copper and amine free Sonogashira coupling at rt


Employing $Pd(Oac)_2$ or $Pd_2(dba)_3$ as catalyst

Tetrabutylammonium acetate as the base

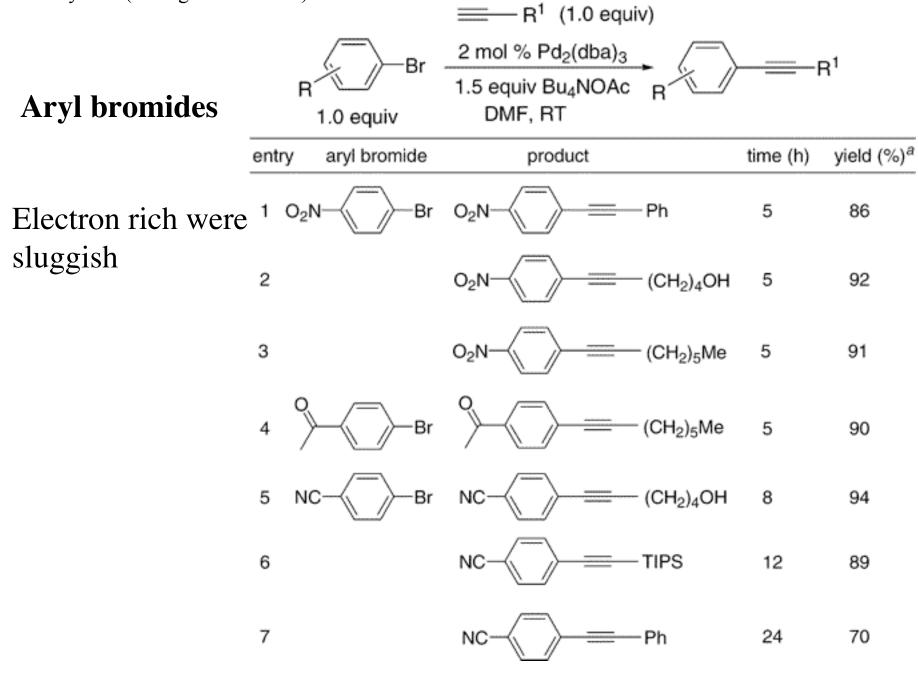
For reaction of aryl iodides and bromides with terminal alkynes



Initial goal--finding a suitable base

Base	Yield %	
Bu ₄ NOAc	93, 6h	\langle
Cs_2CO_3	69	
Et ₃ N	5	
DBU	8	
piperidine	5	
Na ₂ CO ₃	30	

DMF was the optimum solvent



Series of aliphatic Terminal alkynes

Isolated yields (average of two runs). c 1 mol % of Pd(OAc)2 was employed. d Parenthesized yields were obtained with 3 mol % of Pd(OAc)2. e Pd2(dba)3 was used in place of Pd(OAc)2.

a Isolated yields (average of two runs).

The choice of **tetrabutylammonium acetate** as the base is important

Authors unsure of its role but suggest

It removes the most acidic hydrogen in the alkyne May facilitate reduction of $Pd(Oac)_2$ to a catalytically active Pd(0) species

Stabilises the oxidative addition adduct ArPd(II)X (12 e⁻ unstable complex)

```
[ArPd(II)X_3]^{2-}2Bu_4N^+ (16 e<sup>-</sup>)
```

Conclusion

The first Ligand, Copper and Amine free Sonogashira coupling was described

Future benefits

Useful for key steps in natural product synthesis Environmentally useful for industry