Design of Selective PAK1 Inhibitor G-5555: Improving Properties by Employing an Unorthodox Low-pk_a Polar Moiety

Ndubaku et al. ACS Med. Chem. Lett. 2015, 6, 1241-1246

Celeste Alverez Current Literature January 16, 2015

PAK1

- p21-activated kinases (PAK)
- Group I and group II (determined by structural similarity)
- Downstream in many signal transduction pathways
- Play role in cell migration, proliferation, and survival
- PAK1 overexpression has been linked to poor prognosis in some types of breast cancer
- It has been shown that in combination with docetaxel it lead to increased apoptosis in vitro
- Previously 1 PAK1 inhibitor in clinical trials (phase 1)
 - No longer active: no proven efficacy/toxicity

FRAX1036

- Found in literature/in house
 - Appealing potency (22 nM)
 - Moderate kinase selectivity, including against group II PAKs (100-fold)
- Crystal structure showed the piperidine N makes no productive interactions
- > 222 nM cellular activity
 - 89% hERG inhibition at 10 uM
- Previous work showed that by targeting amine at Asp393/Asn394 in ribose binding site of active site increased potency and selectivity over group II
 - Need to change basic amine location from FRAX1036

Structural Modification Theory

Celeste Alverez @ Wipf Group 1/16/2016

Synthesis

5

SAR

Cmpd	R ₁	R ₂	R ₃	PAK1 Ki (nM)/LLE	Cellular IC ₅₀ (nM)	cLogP	MDCK P _{app}	hERG %inhib @ 10 uM
1	N .	Et	N	22/2.8	222	4.9	2.7	89
3	Et	NH	N	6.0/4.3	145	3.9	0.9	ND
4	Et	NH ₂	N	6.1/4.7	147	3.5	1.1	84
5	Et	NH ₂	N	1.9/4.2	124	4.5	0.4	58
6	Et	NH ₂	N	2.1/3.1	45	5.6	1.2	59
7	Me	NH ₂	N	7.4/4.1	341	4.0	0.4	33

Celeste Alverez @ Wipf Group 1/16/2016

1/16/2016

Lipophilic Ligand Efficiency (LLE)

- Lipophilicity is an important molecular parameter to consider in drug development
 - Solubility
 - Permeability (passive)
 - Metabolism
 - Off-target effects/toxicity
- Describes the contribution of lipophilicity to potency
 - log*P*/*D* /–log(potency: Kd, Ki, IC5)

SAR

Cmpd	R ₁	R ₂	R ₃	PAK1 Ki (nM)/LLE	Cellular IC ₅₀ (nM)	срКа	cLogP	MDCK P _{app}	hERG %inhib @ 10 uM
8	Et	`ОН		64/3.8	980	4.0	3.4	21.0	22
9	Et	NH		66/4.3	813	3.9	2.9	10.6	12
10	Ме	`NH		19/5.5	399	6.9	2.2	3.5	21
11	Et	NH ₂		8.0/5.7	148	7.7	2.4	1.7	11
12	Ме	NH ₂	N	3.7/5.5	69	7.7	2.9	2.4	45
13	Ме		N	1.9/5.5	57	8.4	3.2	0.4	60
14	Ме		N	4.3/5.3	73	9.0	3.1	1.0	82
15	Ме	F NH	N	7.9/3.6	53	7.6	4.5	ND	30

8

Structural Data

Celeste Alverez @ Wipf Group 1/16/2016

5-Amino-1,3-dioxane

- Known to have anti-inflammatory properties
 - In mouse model, ear edema showed 73.6% antiinflammatory effects at 20 mg/kg
- Used in somatostatin analogs since 1999 to reduce basicity and improve solubility– improved bioavailability
 - Up to ~13-fold
- Typically avoided due to perceived instability
 - However found to be more stable due to amine
 - Protonate amine first, sparing acetal

Stability of Compound 11

Stability

Cmpd	R ₁	R ₂	R ₃	HLM Cl _{hep} (mL/min/kg)
8	Et	`OH		14.7
9	Et	NH		12.5
10	Me	` NH		10.7
11	Et	NH ₂		9.6
12	Me	NH ₂	N	11.6
13	Me		N	13.8
14	Me		N	11.6
15	Me	F F		17.8

Celeste Alverez @ Wipf Group 1/16/2016

Selectivity of 12

Celeste Alverez @ Wipf Group

ΡK

ΡK

Table S1. Pharmacokinetic Parameters of G-5555 following 2 mg/kg IV Bolus Administration to Female Mice

Animal ID	AUC _{0-tlast} (µM • hr)	AUC _{inf} (µM • hr)	CL (mL/min/kg)	t _{1/2} (hr)	Vss (L/kg)
1	4.86	5.07	13.3	1.30	1.39
2	2.10	2.22	30.5	0.723	1.84
3	2.26	2.34	28.9	0.637	1.41
Mean	3.07	3.21	24.2	0.886	1.55
SD	1.55	1.61	9.48	0.359	0.252

Table S2. Pharmacokinetic Parameters of G-5555 following 25 mg/kg PO

Administration to Female Mice

Animal ID	AUC₀-tlast (μM • hr)	C _{max} (µM)	t _{max} (hr)	F (%)
4	30.0	8.64	0.5	84.7
5	33.8	12.3	0.5	84.2
6	25.8	7.96	0.5	69.4
Mean	29.9	9.63	0.5	79.5
SD	4.00	2.33	0.00	8.69

- In cynomolgus monkey:
 - $CL_p = 3.4 \text{ mL/min/kg}$
 - F = 72%

1.2 100 PD biomarker PK 🔍 1 Normalized pMEK:total MEK ratio Plasma Concentration - μM 0.8 10 0.6 1 0.4 1 Ţ, 0.2 0.1 0 30 mg/kg 20 mg/kg 10 mg/kg MCT

Efficacy

16

Conclusions

- Structural modification of known FRAX1036 guided by previous studies by authors and crystal structures lead to improved binding interactions and potency
- Able to balance potency, permeability, and hERG related toxicity
- Incorporation of the 5-amino-1,3-dioxanyl group lead to reduced pK_a and logP while improving potency and hERG activity
 - Showed via degradation studied the stability of the 5amino-1,3-dioxanyl group
- New compound shows promising PK/PD characteristics that could translate well to the clinic
- Need to show efficacy via effects on tumor growth

