anti-Markovnikov Hydroamination of Alkenes Catalyzed by a Two-Component Organic Photoredox System: Direct Access to Phenethylamine Derivatives

Tien M. Nguyen, Namita Manohar, and David A. Nicewicz.

Angew. Chem. Int. Ed., 2014, ASAP, April 24th Web

(University of North Carolina at Chapel Hill)

A. Manos-Turvey,
Wipf Group Current Literature
May 10th, 2014
Anti-Markovnikov Hydroamination

In 1993, *anti*-Markovnikov Hydroamination was highlighted as one of the top 10 challenges for catalysis.

- repulsion of nitrogen by the olefin must be overcome
- regioselectivity can be difficult to control

Some Literature Examples

- Alkali-base catalysed amine activation

\[
\begin{align*}
\text{R} & \quad + \quad \text{BnNH}_2 \quad \xrightarrow{n\text{BuLi} (0.1 \text{ eq}), \text{THF, 65-120 °C}} \quad \text{R} - \text{N}\text{Bn}
\end{align*}
\]

- Organolanthanide/Titanium/Iridium or Rhodium/Ruthenium catalysed

\[
\begin{align*}
\text{La} & \quad \text{CH(TMS)}_2 \quad \xrightarrow{\text{H}_2\text{N}} \quad \text{Ph} - \text{MeHN} \quad \xrightarrow{[\text{Rh(COD)}(\text{DPPB})]BF_4, 5 \text{ mol%}, \text{THF, 80 °C}} \quad \text{Ph} - \text{MeNN}
\end{align*}
\]

J-S. Rya, G.Y. Li, T.J. Marks, *JACS*, 2003, 125, 12584-12605
The 9-Mesityl-10-methylacridinium Ion

- Donor = mesitylene portion
- Acceptor = acridinium ion
- Reorganisation energy is very small
 - charge remains the same from D|A to D+|A-

The 9-Mesityl-10-methylacridinium Ion

- absorbs in the visible region (450 nm)
 - upon photoexcitation it reaches a long lived electron transfer (ET) state

 ![Diagram of the 9-Mesityl-10-methylacridinium ion with a light source and reaction arrows showing electron transfer]

- 2 h at 203 K and higher energy transfer state (Acr⁺-Mes = 2.37 eV)

Nicewicz and Anti-Markovnikov Reactions

- *Anti*-Markovnikov Alkenol Hydroalkoxylation
 - cyclic ether formation with complete regioselectivity through intramolecular hydroalkoxylation

- *Anti*-Markovnikov Alkene Hydroacetoxylation
 - use of oxidisable *E*-olefins to react with a variety of carboxylic acids regioselectively

Nicewicz and *Anti*-Markovnikov Reactions

- *Anti*-Markovnikov Intramolecular Hydroamination
 - achieve the formation of nitrogen containing heterocycles regioselectively

- Expansion to intermolecular *anti*-Markovnikov hydroamination of alkenes
- Focus upon β-methylstyrenes as phenethylamine derivatives are an important motif in biologically active molecules

![Chemical structures and equations](image-url)

Optimization of Reaction Conditions

All reactions irradiated with a 15 W 450 nm LED flood lamp and run on a 0.2 mmol scale.
Yields determined by 1H NMR spectroscopy using [(H₃C)₃Si]₂O as an internal standard.

![Reaction Scheme](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Cocatalyst</th>
<th>mol %</th>
<th>Yield [%][b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tf</td>
<td>thiophenol</td>
<td>20</td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>Tf</td>
<td>2,6-dimethylthiophenol</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>Tf</td>
<td>4-nitrothiophenol</td>
<td>20</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>Tf</td>
<td>phenyl disulfide</td>
<td>20</td>
<td>78</td>
</tr>
<tr>
<td>5</td>
<td>Tf</td>
<td>–</td>
<td>0</td>
<td><5</td>
</tr>
<tr>
<td>6</td>
<td>Tf</td>
<td>phenyl disulfide</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>Tf</td>
<td>phenyl disulfide</td>
<td>10</td>
<td>89</td>
</tr>
<tr>
<td>8</td>
<td>Tf</td>
<td>phenyl disulfide</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>Boc</td>
<td>phenyl disulfide</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>Ts</td>
<td>phenyl disulfide</td>
<td>10</td>
<td><5</td>
</tr>
<tr>
<td>11</td>
<td>Ns</td>
<td>phenyl disulfide</td>
<td>10</td>
<td><5</td>
</tr>
</tbody>
</table>
Scope of Reaction with Styrenyl Substrates

All reactions irradiated with a 15 W 450 nm LED flood lamp and yields of isolated products (average of two trials).
Scope of Reaction with Different Alkenes

All reactions irradiated with a 15 W 450 nm LED flood lamp and yields of isolated products (average of two trials).
Scope of Reaction with Heterocyclic Amines

All reactions irradiated with a 15 W 450 nm LED flood lamp and yields of isolated products (average of two trials).

<table>
<thead>
<tr>
<th>Product</th>
<th>Yield</th>
<th>Reaction Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>96 h, 83%</td>
<td>96 h, 80%, 2:1 (N1/N2)</td>
</tr>
<tr>
<td></td>
<td>96 h, 57%</td>
<td>X h, 81%, 4:1 (N1/N2)</td>
</tr>
<tr>
<td></td>
<td>96 h, 50% (3 eq imidazole)</td>
<td>72 h, 41%, 1.9:1 (N1/N2)</td>
</tr>
</tbody>
</table>
Proposed Reaction Mechanism

\[\text{PhS}^+ + e^- \rightarrow \text{PhS} \]

\[\text{PhS}^+ + \text{H}^+ \rightarrow \text{PhSH} \]

\[\text{E}_{1/2}^{\text{red}} = +0.16 \text{ V} \]

\[\text{E}_{1/2}^{\text{ox}} = -0.49 \text{ V} \]

\[\text{E}_{1/2}^{\text{red}} = +2.06 \text{ V} \]
Conclusions

- Successfully demonstrated the use of an acridinium catalyst in intermolecular *anti*-Markovnikov hydroamination reactions
 - trisubstituted aliphatic alkenes and α- and β-substituted styrenes with various functional groups appear to be tolerated
 - the amine nucleophiles employed are triflylamide or heterocyclic amines
 - all carried out at rt
- Diastereoselectivity needs to be probed
- Interesting to see further extensions of this work on further substrates and additional reactions apart from hydroamination