Enantioselective Organo-Cascade Catalysis
JACS, 2005, ASAP

Erick B. Iezzi, PhD
Current Literature
October 15, 2005
Why are these articles significant?

- Use chiral amines as enantioselective catalysts (iminium and enamine intermediates) to rapidly assemble complex structures

- MacMillan and co-workers use amine catalysts to mimic an enzymatic ‘cascade catalysis’ that controls product stereochemistry via intermolecular reactions

- List and co-workers use a single amine catalyst to generate complexity via an intramolecular tandem sequence

- Both achieve products with high yields and selectivities (diastereo- and enantioselectivity) under user-friendly conditions with safe and simple starting materials
Asymmetric Aminocatalysis

- Amines can activate carbonyl groups (i.e., acetone) as do Lewis or Brønsted acids
 - Iminium ion enhances both electrophilicity and α-C-H-acidity

- Two aminocatalytic pathways:
 1. Iminium catalysis - Knoevenagel-type condensations, cyclo- and nucleophilic additions
 2. Enamine catalysis - Electrophilic addition and pericyclic reactions

- Aminocatalysis is a biomimetic strategy used by important enzymes such as class I aldolases (enamine catalysis) and ketoacid decarboxylases (iminium catalysis)

Direct Catalytic Asymmetric Three-Component Mannich Reaction (List and co-workers)

\[
\begin{align*}
\text{O} & \quad \text{CHO} \quad \text{NH}_2 \\
20 \text{ mol}\% & \quad \text{NO}_2 \quad \text{OMe} \\
\end{align*}
\]

\[
\xrightarrow{\text{L-Proline (35 mol\%)} \quad \text{DMSO 50\%}}
\]

\[
\text{HN} \quad \text{O}_2 \quad \text{Me} \\
94\% \text{ ee}
\]

Direct Catalytic Asymmetric \(\alpha\)-Amination of Aldehydes (List and co-workers)

\[
\begin{align*}
\text{H} & \quad \text{CHO} \quad \text{N} \quad \text{N} \quad \text{CO}_2\text{Bn} \\
\text{i-Pr} & \quad \text{BnO}_2\text{C} \quad \text{Cbz} \quad \text{Cbz} \quad \text{HO} \\
\end{align*}
\]

\[
\xrightarrow{(\text{S})\text{-Proline (10 mol\%)} \quad \text{CH}_3\text{CN, 0 }^\circ\text{C} \quad \text{then NaBH}_4, \text{EtOH 95\%}}
\]

\[
\xrightarrow{>95\% \text{ ee}}
\]

New Strategies for Organic Catalysis: The First Highly Enantioselective Organocatalytic Diels-Alder Reaction (MacMillan and co-workers)

Enantioselective Organo-Cascade Catalysis
(ASAP Article, MacMillan and co-workers)

- Use amine catalysts to perform a ‘cascade catalysis’ of discrete events that mimic a biocatalytic assembly line, as opposed to the traditional ‘stop and go’ sequences

 - Specifically, polyketide natural products (i.e., erythromycin and actinomycyes) are assembled by polyketide synthases, which perform a successive decarboxylative condensations of simple precursors

- Imidazolidinone-based catalytic cycles are used to generate complex structures without catalyst-catalyst interactions

Cascade Catalysis: Merging Iminium (Im) and Enamine (En) Activation

Organo-Cascade Catalysis: Effect of Catalyst and Solvent

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>solvent</th>
<th>% conversion</th>
<th>dr (syn:anti)</th>
<th>% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>EtOAc</td>
<td>3</td>
<td>1:1</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>EtOAc</td>
<td>10</td>
<td>5:1</td>
<td>89</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>EtOAc</td>
<td>79</td>
<td>9:1</td>
<td>97</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>EtOAc</td>
<td>78</td>
<td>8:1</td>
<td>97</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>EtOAc</td>
<td>78</td>
<td>11:1</td>
<td>99</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>CHCl₃</td>
<td>54</td>
<td>8:1</td>
<td>94</td>
</tr>
</tbody>
</table>

Conversion determined by GLC analysis of product relative to an internal standard (benzyl methyl ether).
Absolute and relative configuration assigned by chemical correlation.
Enantiomeric excess determined by chiral GLC analysis (Bodman β-DM).
Organo-Cascade Catalysis: Scope of Enal Component and Representative Nucleophiles

<table>
<thead>
<tr>
<th>entry</th>
<th>R</th>
<th>product</th>
<th>temp (°C)</th>
<th>% yield</th>
<th>dr<sup>a</sup></th>
<th>% ee<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td></td>
<td>-50</td>
<td>86</td>
<td>14:1</td>
<td>99</td>
</tr>
<tr>
<td>2</td>
<td>Pr</td>
<td></td>
<td>-50</td>
<td>74</td>
<td>13:1</td>
<td>99</td>
</tr>
<tr>
<td>3</td>
<td>CO<sub>2</sub>Et</td>
<td></td>
<td>-60</td>
<td>80</td>
<td>22:1</td>
<td>99</td>
</tr>
<tr>
<td>4</td>
<td>CH<sub>3</sub>CO<sub>2</sub>Et</td>
<td></td>
<td>-40</td>
<td>82</td>
<td>11:1</td>
<td>>99</td>
</tr>
<tr>
<td>5</td>
<td>Ph</td>
<td></td>
<td>-40</td>
<td>83</td>
<td>9:1</td>
<td>99</td>
</tr>
<tr>
<td>6</td>
<td>i-Pr</td>
<td></td>
<td>-40</td>
<td>67</td>
<td>12:1</td>
<td>>99</td>
</tr>
</tbody>
</table>

^a Absolute and relative configuration assigned by chemical correlation.

^b Enantiomeric excess determined by chiral GLC analysis.
Organo-Cascade Catalysis: Employment of Discrete Amine Catalysts to Enforce Cycle-Specific Selectivities

Summary

MacMillan and co-workers:

- Developed a new strategy for organo-catalysis based on the biochemical blueprints of cascade catalysis
- Rapid access to structural complexity while achieving exquisite levels of enantiocontrol (combining catalytic cycles leads to enantioenrichment)
- Studies in the area of triple cascade catalysis are underway