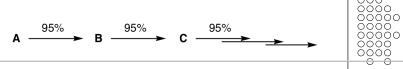

Definitions

• **Disconnection**: An analytical operation, which breaks a bond and converts a molecule into a possible starting material. The reverse of a chemical reaction. Symbol ⇒ and a curved line drawn through the bond being broken.

- **Reagent**: A compound which reacts to give an intermediate in the planned synthesis or to give the target molecule itself. The synthetic equivalent of a synthon.
- **Synthetic equivalent**: A reagent carrying out the function of a synthon which cannot itself be used, often because it is too unstable.
- **Synthon**: A generalized fragment, usually an ion, produced by a disconnection. (some people also use synthon for a synthetic equivalent).
- Target Molecule: The molecule whose synthesis is being planned.

Retrosynthesis


Retrosynthesis is the process of "deconstructing" a target molecule into readily available starting materials by means of

- imaginary breaking of bonds (disconnections) and by the conversion of one functional group into another (functional group interconversions).

The following factors need be taken into consideration:

Efficiency, e.g. the "arithmetic demon":

"The arithmetic demon dictates one of the major axioms of synthesis: Get the most done in the fewest steps and in the highest yield." (R. E. Ireland)

5 steps: (0.95)⁵ = 77% 25 steps: (0.95)²⁵ = 28% 100 steps: (0.95)¹⁰⁰ = 0.6%

A linear synthesis with 14 starting materials and intermediates:

A
$$\xrightarrow{80\%}$$
 B $\xrightarrow{80\%}$ C $\xrightarrow{80\%}$ D $\xrightarrow{80\%}$ E $\xrightarrow{80\%}$ F $\xrightarrow{80\%}$ G $\xrightarrow{80\%}$ H $\xrightarrow{80\%}$ I $\xrightarrow{80\%}$ J $\xrightarrow{80\%}$ K $\xrightarrow{80\%}$ L $\xrightarrow{80\%}$ M $\xrightarrow{80\%}$ N $\xrightarrow{80\%}$ O yield = $(0.8)^{14} = 4\%$

Question: If every reaction goes with a 60% yield, what is the more efficient strategy:

A

A

A

B

B-A-A'-B

C

C-B-A-A'-B-C

D

D-C-B-A-A'-B-C-D

E-D-C-B-A-A'-B-C-D-E

or

A

B

B-A

C

C-B-A

D

D-C-B-A

E-D-C-B-A

E-D-C-B-A

E-D-C-B-A

E-D-C-B-A-A'-B-C-D-E

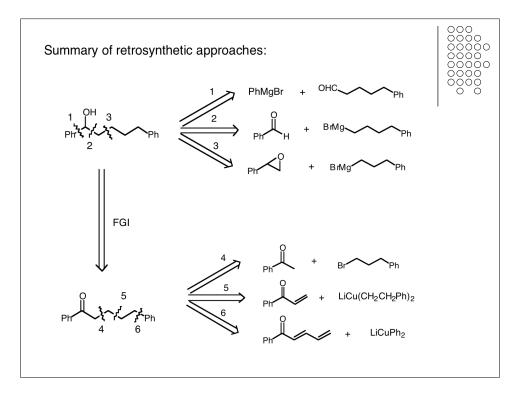
Carpanone: Chapman, O. et al. J. Am. Chem. Soc. **1971**, 93, 6696.

Mechanism:

Retrosynthetic analysis

General strategy:

- Remove, add or change functional groups; FGI



$$\bigoplus_{\mathbb{I}} \longrightarrow \bigoplus_{\mathbb{I}} \longrightarrow \bigoplus_{\mathbb{I}} \longrightarrow \bigoplus_{\mathbb{I}} \longrightarrow \bigoplus_{\mathbb{I}} \bigoplus_{\mathbb{I}} \longrightarrow \bigoplus_{\mathbb{I}} \bigoplus_{\mathbb{I}}$$

- Apply one- and two-group disconnections ("1,n-relationships), pericyclic reactions, etc.	000 0000 00000 00000 00000 0000
Example:	
Retrosynthesis 1:	
	I 000
	000 0000 00000 00000 00000 0000

000
000

000
000

The "best" approach uses readily available starting materials in high yielding, reliable transformations. It may very often be based on personal choice.

Warren, S. <i>Designing Organic Synthesis</i> , Wiley, 1978. - One group disconnections:	000 0000 0000 0000 0000 0000 0000
	'

Two group disconnections:

I	Illogical two group disconnections:	000
	Heteroatoms:	000 0000 0000 0000 0000 0000 0000