"Direct Asymmetric anti-Mannich Type Reactions Catalyzed by a Designed Amino Acid"

S. Mitsumori, H. Zhang, P. Cheong, K. Houk, F. Tanaka, and C. Barbas J. Am. Chem. Soc. **2006**, 128, 1040

> Presented by: Zack Brown Chem 2320, Spring 2006

Mannich Reaction - Outline

- I. Current Implementations
- II. Classic Mannich Mechanism
- III. New Developments (Asymmetric)
 - Direct vs. Indirect
 - Proline Catalysis
- IV. Current Work
 - Designed Amino Acid
- V. Further Extensions

Implementations of the Mannich

Asymmetric Mannich Reactions

Classic Mannich Reaction

Multi-Component Condensation

- Nonenolizable Carbonyl (usually Aldehyde)
- Amine (1° or 2°)
- Enolizable carbonyl
- Acid (Usual) or Base Catalyzed
- Product: β-Amino
 Carbonyl Derivatives

Mannich Reaction: Mechanism

Formation of the reactive iminium ion under acidic conditions:

Mannich Reaction: Mechanism

Alkylation of the enolized carbonyl compound:

Asymmetric Mannich Reactions

6

Mannich Reaction: Direct vs. Indirect

Mannich Reaction: New Twists

Enantioselective Catalysis

- Preformed Imine and Enols with Metals
- Transition Metals
- Proline

Source: http://web99.arc.nasa.gov/~astrochm/aachiral.html

Asymmetric Mannich Reactions

Mannich Reaction: Proline

- Excellent dr's and ee's
- Exclusive syn diastereomer
- Other substrates tested

Mechanism of the Proline Reaction

TS of the Proline Reaction

- Formation of the (E)-Aldimine
- Cyclic TS creates syn stereoselectivity through addition to Si face of Aldimine
- (R)-Proline give syn enantiomer

Performance of the Catalyst

			time		yield	dr ^b	ee ^c
entry	R ¹	R^2	(h)	product	(%)	anti:syn	(%)
1^d	Me	Me	-	_	_	95:5	98
2	Me	Et	1	2	70	94:6	>99e
3	<i>i</i> -Pr	Et	3	3	85	98:2	99
4	<i>n</i> -Bu	Et	0.5	4	54	97:3	99
5 ^{f,g}	<i>n</i> -Bu	Et	1	4	71	97:3	99
$6^{f,h}$	n-Bu	Et	2	4	57	97:3	>99

Asymmetric Mannich Reactions

Anti-Selective Mechanism

- s-trans conformation of enamine
- Placement of methyl

group

Asymmetric Mannich Reactions

Synthesis of the Catalyst

Asymmetric Mannich Reactions

Future of the Asymmetric Mannich

 Applications and Extensions of this Paper

 Rational Design of Organocatalysts

Conclusion

- I. Classic Mannich
- II. State of the Art
- III. Current Work
- IV. Further Extensions

<u>References</u>

- 1. S Mitsumori, H Zhang, P Cheong, K. N. Houk, F Tanaka, and C Barbas, III. J. Am. Chem. Soc. **2006**, *128*, 1041
- 2. B List, Tetrahedron, **2002**, 58, 5573
- 3. B List, P Pojarliev, W Biller, and H Martin, J. Am. Chem. Soc. **2002**, *124*, 827
- 4. M Arend, B Westermann, and N Risch, Angew. Chem Int. Ed., **1998**, *37*, 1044
- 5. B List, J. Am. Chem. Soc., **2000**, *122*, 9336
- 6. "Strategic Applications of Named Reactions in Organic Synthesis", L Kurti, B. Czako, Elsevier, St. Louis, MO, **2005**