Reagent-Controlled Asymmetric Homologation of Boronic Esters by Enantioenriched Main-Group Chiral Carbenoids

Org. Lett. 2006, 8, 773-776

P. R. Blakemore, S. P. Marsden, and H. D. Vater

Oregon State University

Presented by: John Maciejewski

Presentation Outline

- Introduction
- Recent applications of 1,2-metalate rearrangements
- Key innovations and synthetic utility
- Next directions and future applications

Recent Applications of 1,2-Metalate Rearrangements

1,2-Metalate rearrangements of α -alkoxyalkyl cuprates

Jarowicki, K.; Kocienski, P. J. Synlett 2005, 167.

SN₂ displacement of neighboring halogen Alkyl migration favored over alkoxide due to stronger B-O bond

Matteson, D.S; Mah, R. W. H. J. Am. Chem. Soc. 1963, 85, 2599.

Preparation of Functionalized Carbenoid Reagents

$$R^1 = tolyl$$

X, $R^2 = aziridine$
 $R^3 = Ethyl$
M = MgBr

 R^1 = Phenyl, tolyl

X = F, Cl, Br $R^2, R^3 = alkyl$

M = Li

Satoh, T.; Takano, K. Tetrahedron 1996, 52, 2349.

Sulfoxide/metal exchange occurs α -alkylhalo magnesium species more stable α -alkylhalo lithium species more reactive

 α -Halogenation occurs with inversion at sulfur center Diastereomers (9 & 10) isolated via multiple recrystallization in acetone Isolate enantiomer 9 in >97 % ee (HPLC)

Hoffmann, R. W.; Nell, P. G.; Leo, R.; Harms, K. Chem. Eur. J. 2000, 6, 3359.

Evidence of lithium carbenoid generation from α -halosulfoxides

Satoh, T.; Takano, K. Tetrahedron 1996, 52, 2349.

Stereospecific Reagent Controlled Homologation (SRHC)

Stereospecific Reagent Controlled Homologation (SRCH)

1) Carbenoid reagents must be configurational and chemically stable

Stereospecific Reagent Controlled Homologation (SRCH)

2) Ate-complex formation and breakdown must occur stereospecifically

Indirect SN_2 displacement of chlorine (1,2-rearrangement) Inversion of stereochemistry at chiral center

3) Metalate rearrangement must occur after ate-complex formation Product not allowed to reenter the coupling reaction cycle

Prevents unwanted oligomerization

Observations With Magnesium Carbenoids

Low to modest yields with range of % ee Reaction performs best using preformed conditions Non-polar solvent increased % yield and % ee

Mg carbenoid	Boronic ester	% Yield range	% ee range
19	Catechol (20)	11 - 44	36 - 76
19	Neopentyl glycol (21)	0 - 56	n/a - 82

Ph

19

20

21

Promising Results With Lithium Carbenoids

Good yields with high % ee Lithium best if Barbier-type conditions used

Li carbenoid	Boronic ester	% Yield	% ee
22	Neopentyl glycol (21)	0 - 86	n/a - 96

22

21

Summary

- New type of C-C bond formation demonstrated
- Methodology allows for stereochemical control of products
- ➢ Homologated products obtained in range of % yield and % ee
- Promising results from lithium carbenoids

Next Directions/Future Applications

Continue to expand on unexpected Li carbenoid results

Test methodology using more complex R² and R³ groups Continue to work to optimize reaction conditions

Thank you

Acknowledgements:

Professor Wipf

