An Improved Asymmetric Reformatsky Reaction Mediated by (-)-N,N-Dimethylaminoisoborneol

Organic Letters, **2006**, 8, 1125 Ralf J. Kloetzing, Tobias Thaler, and Paul Knochel

Julia Vargas
Chem 2320
Journal Club Presentation
4/10/2006

Outline

- Background
- Features and Mechanism
- Extensions to the Reformatsky Reaction
- Improved Asymmetric Reformatsky Reaction
- Conclusions and Next Directions

Reformatsky Reaction

- Discovered by S. Reformatsky in 1887
- The classical reformatsky involved a zinc-induced reaction between an α -halo ester and an aldehyde or ketone.

$$XCH_{2}COOEt \xrightarrow{Zn} X-Zn-CH_{2}COOEt \xrightarrow{R_{2}} X-Zn-CH_{2}COOEt$$

$$X = X - Zn - O$$

$$R_{1} = C$$

$$CH_{2}COOEt \xrightarrow{R_{2}} CH_{2}COOEt$$

$$R_{2} = C$$

$$R_{2} = C$$

$$R_{3} = C$$

$$CH_{2}COOEt$$

"Reformatsky reactions are defined as those resulting from metal insertions into carbon-halogen bonds activated by carbonyl, carbonyl derived or carbonyl related groups in vicinal or vinylogous positions with practically all kinds of electrophiles."

Mechanism

$$R^{2} \longrightarrow R^{2} \longrightarrow R^{3} \longrightarrow R^{4} \longrightarrow R^{4$$

Key Features

Features:

- One Pot Synthesis
- Carried out in ether solvents or ether/polar solvent mixtures (CH₃CN, DMF, DMSO, HMPA)
- Mild conditions
- high stereoselectivity
- •Use of activated metal reagents or low-valent metal salts
 - Activated Metals:
 - Zn, Li, Mg, Cd, Ba, In, Ge, Ni, Co, Ce
 - •Metal Salts:
 - CrCl₂, SmCl₂, TiCl₂

Synthetic Utility:

β-hydroxyesters are valuable precursors in natural products synthesis and pharmaceuticals

Advantages over the Classic Aldol:

- •Mild/Neutral Conditions
- •Works for sterically crowded ketones
- Ester enolate can be formed in presence of highly enolizable aldehyde and ketone functionalities
- Intra- and Inter- molecular reactions feasible
- •Variety of Electrophiles can be used

The Reformatsky using Chiral Auxiliaries

• Diastereoselective formation of Fluroazetidones via a reformatsky-type reaction of Ethyl Bromodifluoroacetate with Chiral 1,3-Oxazolidines

Why Fluorine?

- Small VDW radius and electronegativity has significant effect on physical and chemical properties of molecules
- gem-difluoro amino acids and derivatives are valuable tools for the inhibition of metabolic processes
 - •Difluoroazetidin-2-ones exhibit specific properties as inhibitors of Leucocyte Elastase

The Reformatsky using Chiral Ligands

• Achieved highly enantioselective Reformatsky reaction of Ketones using cinchona alkaloids as chiral ligands

R
$$\rightarrow$$
 BrZn \rightarrow Ot-Bu \rightarrow Ch₂CO₂t-Bu \rightarrow Pyridine, THF \rightarrow Tr up to 97 % ee

• Chelation with the sp²-nitrogen adjacent to the reactive carbonyl controlled the facial selectivity to give the chiral alcohol

An Efficient Route to β-amino Esters

• Enantioselective one-pot imino-Reformatsky reaction of 4-chlorobenzaldehyde with 2-methoxy-aniline and bromoacetates

Key Features

- one-pot synthesis
- catalytic
- enantioselective
- highly efficient, practical
- ligand can be recovered
- Gave β -amino esters in good yield

Development of an Improved Asymmetric Reformatsky

Problem: The direct Reformatsky reaction via insertion of activated zinc into α -bromoacetates lack generality and have low enantioselectivities

Solution: Utilization of (-) DAIB as a ligand achieved good enantioselective additions of Reformatsky Reagents into aliphatic and aromatic aldehydes.

Synthesis of Reformatsky Reagents

•Reformatsky reagents prepared via direct zinc insertion into bromoacetic esters

Scheme 1. Preparation of Reformatsky Reagents 1a-c

Tested Various Chiral Ligands

• Examined amino alcohols that give high asymmetric inductions as chiral ligands for the addition of diethylzinc into aldehydes

Table 1. Reformatsky Reaction with Various Chiral Amino Alcohols

entry	amino alcohol	R	yield (%)	ee^d (%)
1	2	Me	99^b	61
2	3	Me	99^b	9
3	4	Me	99^b	26
4	5	Me	75^c	86
5	5	<i>t</i> Bu	84^b	78
6	6	Me	93^b	72

^a All reactions were performed on a 0.5 mmol scale using amino alcohol (1.2 equiv, 0.6 equiv in case of **2**), Et₂Zn (0.7 equiv), and Reformatsky reagent (1.1 equiv). ^b Conversion determined by GC analysis with tetradecane as internal standard. ^c Isolated yield. ^d Determined by GC analysis (Chiraldex CB).

** BuLi and MeMgCl used as deprotonating agents led to racemic mixtures or very poor ee

Examined Substrate Scope

Table 2. Reformatsky Reaction with (–)-DAIB and Various Aldehydes^a

entry	R	product	conv (%)	$yield^b$ $(\%)$	ee ^{c,d} (%)
1	4-bromophenyl	7 b	79	87	81
2	2-bromophenyl	7c	71	91	78
3	4-chlorophenyl	7d	85	65	80
4	4-cyanophenyl	7e	89	88	72
5	4-isopropylphenyl	7 f	63	90	88
6	$4 ext{-methylthiophenyl}^e$	7g	57	93	93
7	3-benzothienyl	7h	62	94	90
8	2-thienyl	7i	86	85	92
9	3-thienyl	7 j	88	87	93
10	2-furyl	7k	99	86	84
11	neopentyl	71	77	83	92
12	n-pentyl	7m	64	88	78
13	2,2-dimethyl-2-methoxyethyl	7 n	61	85	74
14	benzyloxymethyl	7o	79	87	66
15	2-phenylvinyl	7p	48	92	71

^a See Table 1. ^b Isolated yield based on conversion. ^c Determined by chiral GC (Chiraldex CB) or chiral HPLC (Chiralcel OD-H). ^d The absolute stereochemistry (*S*) was assigned by comparison of the optical rotation with literature data. ^{4e}, For a procedure, see ref 17.

4-methylthiophenyl Derivative = intermediate in Synthesis of Duloxetine, Inhibitor of Serotonin and Norephedrine uptake carriers

Electron Rich vs Poor

- e- rich increase ee, lower % conversion
- Sulfur containing
 - ee enhanced regardless of position on substrate
- Aliphatic aldehydes
- more hindered substrates, greater increase in ee

Substrate Scope for Fluorinated Reagent

- Observed that electron poor aldehydes had an increase in ee with the fluorinated reagent
- Position of the sulfur atom has significant effect on ee

• Also selective for Sterically hindered, aliphatic aldehydes **Table 3.** Reformatsky Reaction with the Difluoro Reagent **1c**, (–)-DAIB and Various Aldehydes

entry	R	product	conv (%)	$\begin{array}{c} {\rm yield}^b \\ (\%) \end{array}$	ee ^{c,d} (%)
1	phenyl	8a	92	82	88
2	4-bromophenyl	8b	96	83	87
3	4-cyanophenyl	8 c	91	88	84
4	2-thienyl	8d	66	90	90
5	3-thienyl	8e	69	84	87
6	neopentyl	8f	91	81	80

 $^{a-c}$ See Table 2. d The absolute stereochemistry (R) was assigned by comparison of the optical rotation with literature data. 14a

Effects of Sulfur Additives

Scheme 2. Reformatsky Reaction Using Sulfur Additives

· Sulfur containing compounds used as additives showed an increase in the enantioselectivity

Conclusions

- (-) DAIB is an excellent ligand for the enantioselective addition of the Reformatsky Reagent in to various aldehydes
- High enantioselectivities were obtained for thiophene aldehydes or sterically hindered aliphatic aldehydes
- Addition of the difluoro zinc reagent also proceeded with high enantioselectivity
- The presence of sulfur additives had a significant impact on the selectivity of these reactions

Next Directions

- Investigate the role of sulfur on the selectivity of these reactions and its involvement with regards to the mechanism for the reaction
- •Explore the effects of sulfur additives in fluoroderived substrates
- •Can this ligand be used in catalytic application?
- •Explore the benefit of using different metals or metal salts other than Zn

References

- Cozzi, P.G.; Rivalta, E.; Angew.Chem. Int. Ed. 2005, 3600
- http://gecco.org.chemie.uni-frankfurt.de/fact_sheets/fact_sheet_oo3/elastase.html (accessed April 3, 2005)
- Kurti, L.; Czako, B. Strategic Applications of Named Reactions in Organic Synthesis; Elsevier Academic Press. Burlington MA. 2005.
- Ocampo, R.; Dolbier, W. R. Jr. *Tetrahedron* **2004**, *60*, 9325-9374;
- Ojida A.; Yamano T.; Taya N.; Tasako A.; Org. Lett. **2002**, *4*, 3051.
- Quirion J.C. et al. J. Org. Chem. 1999, 64, 8461
- Yamakawa, M.; Noyori, R.; Organometallics. 1999. 18, 128

