Chem 1310/2370 - 9/2/2009

Organometallics

٩

The following table gives a brief summary of the reactions between major classes of functional groups and reducing, oxidizing, and organometallic agents (A/B = acid/base reaction = simple proton transfer; - = no reaction). Mechanisms of these processes are provided in lecture notes and in Vollhardt. Aldehydes are more reactive than ketones. Ester and acids are even less reactive.

					90		
<u>Substrate</u> →¤	RCH ₂ OH	RR'CHOH#	RR'R"COH	RCHO¤	RCOR'¤	RCO ₂ R'¤	RCO ₂ H¤
Reagent ↓ #	ц	ц	ц	ц	ц	ц	ц
LAH¤	A/B¤	A/B¤	A/B¤	RCH2OH¤	RR'CHOH¤	RCH ₂ OH + HOR'¤	RCH ₂ OH
NaBH ₄ ¤	A/B¤	A/B¤	A/B¤	RCH ₂ OH¤	RR'CHOH¤	-#	A/B¤
PCC¤	RCHO¤	RCOR'¤	- H	- H	-H	-11	-11
CrO3/H2SO4#	RCOOH	RCOR'¤	-#	RCOOH¤	-н	-H	-¤
R*-Li¤	A/B¤	A/B¤	A/B¤	RR*CHOH¤	RR'R*COH¤	RR*R*COH + HOR'¤	RCOR*#
R*- <mark>MgX</mark> ¤	A/B¤	A/B¤	A/B¤	RR*CHOH#	RR'R*COH	RR*R*COH	A/B¤

See: V&S; Chapter 8.7-8.9

A. Organometallic Mechanisms

Oxidation State: The oxidation state of a metal is defined as the charge left on the metal after all ligands have been removed in their natural, closed-shell configuration. This is a formalism and not a physical property!

<u>d-Electron Configuration</u>: position in the periodic table *minus* oxidation state.

<u>18-Electron Rule</u>: In mononuclear, diamagnetic complexes, the total number of electrons never exceeds 18 (noble gas configuration). The total number of electrons is equal to the sum of d-electrons *plus* those contributed by the ligands.

18 electrons = coordinatively saturated

< 18 electrons = coordinatively unsaturated.

bridging by lone pairs on Cl; each Cl acts as a 2-electron, mononegative ligand to <u>one</u> of the Pd's, and a 2-electron neutral donor ligand like PPh₃ to the other

Basic reaction mechanisms

- **ligand substitution**: $M-L + L' \rightarrow M-L' + L$ can be associative, dissociative, or radical chain.

L M X + - + - + -

trans-effect: kinetic effect of a ligand on the role of substitution at the position trans to itself in a square or octahedral complex (ground-state weakening of bond).

- oxidative addition:

- **reductive elimination**: the major way in which transition metals are used to make C,C- and C,H-bonds!

Complex geometry and ligand effects on rate: Amatore, C.; Jutand, A.; Suarez, A., "Intimate mechanism of oxidative addition to zerovalent palladium complexes in the presence of halide ions and its relevance to the mechanism of palladium-catalyzed nucleophilic substitutions." *J. Am. Chem. Soc.* **1993**, *115*, 9531-9541.

The Ligand. Among the phosphines used for the Heck reaction are PPh₃, P(*o*-tol)₃, P(furyl)₃, PCy₃, 2-(di-*t*-butylphosphanyl)biphenyl, dppe, dppp, dppb, and dppf as well as AsPh₃. PCy₃ is very effective for aromatic chlorides. Most phosphines favor the *trans*-complex and thus slow down the catalytic cycle. Bidentate phosphines are used when monodentate ligands are ineffective or to influence stereoselectivity in combination with triflates (cationic pathway).

N-heterocyclic carbene ligands (for example with N,N'-bis(2,4,6-trimethylphenyl)imidazolium chloride (IMES•HCI)) provide useful, highly reactive catalytic systems.

Fischer carbene complex

- transmetalation:

$R-M + M'-X \rightarrow R-M' + M-X$

Summary of Mechanisms:

- ligand substitution
- oxidative addition/reductive elimination
- migratory insertion/ β -elimination (carbo-, hydrometalation)
- alkene metathesis
- transmetalation