Chemistry 0310 - Organic Chemistry 1

Chapter 13. Alkynes

Methods for preparation of alkynes:

- **Dehydrohalogenation** of vicinal dihalides with strong bases (NaNH₂). Vicinal dihalides can be obtained by dibromination of alkenes.

- **Dehydrohalogenation** of geminal dihalides with strong bases (NaNH₂). Geminal dihalides are obtained from ketones by treatment with PX₅.

- A popular synthesis of alkynes applies displacement reactions (S_N2) of acetylides.

RH	BuLi, or NaNH ₂	RM	R-X'	R— —— R'
terminal alkyne		metalated alkyne		internal alkyne

Reactions of alkynes:

- Hg(II)-catalyzed hydration provides ketones from terminal as well as internal alkynes.

- **Hydrogenation** (H₂, catalyst) provides alkanes via twofold <u>syn-addition</u> of H₂ to the double bond. In the presence of poisoned catalysts (<u>Lindlar</u>, <u>Ni₂B</u>) the intermediate alkene can be isolated.

- Lindlar or Ni₂B hydrogenation of alkynes provides Z-alkenes via syn-addition.

- **Dissolving metal reduction** of alkynes with Li or Na in liquid amines provides <u>E-alkenes</u> via radical anions, radicals, and anions.

- Addition of X_2 to alkynes occurs stepwise via (*E*)-1,2-dihaloalkenes to 1,1,2,2-tetrahaloalkanes. Addition of Br_2 in the absence of heat or light provides <u>vicinal dibromides</u>.

- Addition of HX to alkynes follows Markovnikov's rule to give vinyl halides and *geminal* dihaloalkanes.

- Oxidative cleavage of alkynes with O3 or KMnO4 results in carboxylic acids.