Development of small molecule antagonists of androgen receptor for prostate cancer treatment

Wipf Group I University of Pittsburgh

Serene Tai Research Topic Seminar 1st April 2017

Prostate Cancer – Facts and Statistics

Prostate

- compound tubuloalveolar exocrine gland of the male reproductive system
- about the size of a walnut

❖ Prostate cancer

- uncontrolled growth of cells in the prostate gland
- prostate adenocarcinoma is the major cancer type
- 1 in 7 men will be diagnosed with prostate cancer in their lifetime
- average age 66; rare before 40

Symptoms

- no symptoms in the early stage
- pain and blood in urination, frequent urination, pain in bones and other areas occur in advanced stages

American Cancer Society, Cancer Facts & Figures 2017

	Male					Female			
	4Prostate	161,360	19%			Breast	252,710	30%	
	Lung & bronchus	116,990	14%			Lung & bronchus	105,510	12%	
Estimated New Cases	Colon & rectum	71,420	9%		T	Colon & rectum	64,010	8%	
	Urinary bladder	60,490	7%			Uterine corpus	61,380	7%	
	Melanoma of the skin	52,170	6%			Thyroid	42,470	5%	
	Kidney & renal pelvis	40,610	5%		7	Melanoma of the skin	34,940	4%	
	Non-Hodgkin lymphoma	40,080	5%			Non-Hodgkin lymphoma	32,160	4%	
	Leukemia	36,290	4%			Leukemia	25,840	3%	
ESUL	Oral cavity & pharynx	35,720	4%			Pancreas	25,700	3%	
	Liver & intrahepatic bile duct	ver & intrahepatic bile duct 29,200 3%		Kidney & renal pelvis	23,380	3%			
	All sites	836,150	100%			All sites	852,630	100%	
	Male			Female					
	Lung & bronchus	84,590	27%			Lung & bronchus	71,280	25%	
	Colon & rectum	27,150	9%			Breast	40,610	14%	
	4 Prostate	26,730	8%			Colon & rectum	23,110	8%	
	Pancreas	22,300	7%			Pancreas	20,790	7%	
	Liver & intrahepatic bile duct	19,610	6%			Ovary	14,080	5%	
	Leukemia	14,300	4%			Uterine corpus	10,920	4%	
	Esophagus	12,720	4%			Leukemia	10,200	4%	
	Urinary bladder	12,240	4%			Liver & intrahepatic bile duct	9,310	3%	
	Non-Hodgkin lymphoma	11,450	4%			Non-Hodgkin lymphoma	8,690	3%	
	Brain & other nervous system	9,620	3%			Brain & other nervous system	7,080	3%	
	All sites	318,420	100%			All sites	282,500	100%	

Androgen Receptor (AR)

* AR is a ligand-dependent nuclear transcription factor that belongs to the steroid hormone receptor superfamily

X chromosome

- ❖ AR gene encodes a protein of 919 amino acids (110 kDa)
- Consists of 4 major functional domains:
 - N-terminal domain (NTD)
 - DNA binding domain (DBD)
 - Hinge region
 - Ligand binding domain (LBD)
- Structure of full length AR has not been solved

5.6 4.8 0.8 0.7--> 20 > 15 26 Intron size (kb) AR gene 5' AF1 (142-485) WHTLF (433-437) \$55 6×3 665 919 AR protein NTD DBD LBD C terminus ↑ Tau-1 NES NLS Hinge Helix 12 Tau-5 (110 - 370)(360 - 485)**LBD** 669 NTD

Acta Pharmacologica Sinica. **2015**, *36*, 3-23 J. Carcinog. **2011**, *10*, 20 ACS Chem. Biol. **2016**, *11*, 2499–2505

N-terminal Domain (NTD)

- ❖ Accounts for more than half the size of AR
- Contains transactivation function (AF1)
- ❖ The polyglutamine (polyQ CAG) and polyglycine (polyG GGC) tracts affect AR transactivation activity
- ❖ A combination of experimental and computational analysis suggest that the NTD exists as partially folded protein intermediate (neither full random coil nor stable globular comformation)
- ❖ Flexible for binding with multiple structurally diverse protein partners

Biochem. 2008, 47, 3360-3369

DNA Binding Domain (DBD) and Hinge

- Highly conserved cysteine rich region
- Monomer consists of two zinc finger domains
 - P-Box: coordinates contacts with DNA groove at the promoter region
 - D-Box: functions as DBD/DBD binding site in AR dimer

***** Hinge region

- contains part of the nuclear localization signal (NLS) for AR nuclear transport
- nuclear import is mediated by importin- α

Acta Pharmacologica Sinica. 2015, 36, 3-23 Nat. Rev. Urology. 2015, 12, 37-47

Ligand Binding Domain (LBD)

Structure

- \diamond Arranged in a 3-layer, antiparallel α -helical sandwich fold
- **...** Consists of 11 α-helixes and 4 short β-strands
- ❖ The ligand binding pocket (LBP) is surrounded by H3, H5, and H11
- ❖ H12 forms the core of the activation function 2 (AF2) domain

Functions

- Binding site of androgens for AR signaling
- ❖ Ligand-dependent AF-2 interacts with NTD (helps stabilize AR dimer complex) and binds with co-activators during AR action
- ❖ Regulation of AR nuclear export
- ❖ Most popular target for AR antagonists

J. Biol. Chem. **2000**, 275, 26164-26171 Acta Pharmacologica Sinica. **2015**, 36, 3-23

Androgens & AR Agonists

- The two most important endogenous androgens are testosterones and dihydrotestosterones (DHT)
- ❖ Synthesized in the testes (<95 %) and adrenal gland

J. Biol. Chem. **2000**, 275, 26164-26171 Proc. Natl. Acad. Sci. **2001**, 98, 4904-4909 Protein Sci. **2006**, 15, 987-999

Androgens & AR in Prostate Development

Androgen and AR action in the prostate

Paracrine pathway: prostate homeostasis

J. Mol. Endocrinol. **2015**, 54, 15-29 Acta Pharmacologica Sinica. **2015**, 36, 3-23

Androgens & AR in Prostate Cancer

, Autocrine pathway: AR malignancy switch

❖ 159 out of 1029 mutations found in gene that encodes AR predispose males to prostate cancer

- ❖ A shorter polyQ length (CAG) in the NTD of the AR is associated with higher risk in prostate cancer
- Low serum testosterone level is correlated to increased cancer risk
- ❖ A prostate specific antigen (PSA) level above 4 ng/mL is considered abnormal

Hum. Mutat. **2012**, 33, 887-894 J. Mol. Endocrinol. **2015**, 54, 15-29 Acta Pharmacologica Sinica. **2015**, 36, 3-23

Initiation of Prostate Cancer

- ❖ Alterations in the AR-driven transcriptional program
 - DNA microarray analysis and high-throughput profiling
 - (i) identification of androgen-regulated gene
 - (ii) analysis of androgen-regulated gene expression levels in normal vs cancer cell lines
 - -Eg: characterization of the temporal program of transcription identified 146 androgen-responsive genes from LNCaP cancer cell lines with transcript alterations
 - -Eg: FKBP51 androgen-regulated gene was expressed significantly higher in tumor samples relative to benign samples

PNAS. **2002**, 99, 11890-11895 Endocrinology. **2004**, 145, 3913-3924

Initiation of Prostate Cancer

\$ Changes in the interaction of AR with AR cofactors

- **Chromosomal fusions** of androgen-regulated promoter, transmembrane protease, serine 2 (TMPRSS2), with AR coregulators (ERG and ETV1) from the E-twnty-six (ETS) family have been found in >50% of the patients in early stage of prostate cancer

J. Cancer. Sci. Ther. **2012**, *4*, 94-101 Nat. Rev. Cancer. **2014**, 145, 187-198

Initiation of Prostate Cancer

- ❖ Post-translational modifications contributes to cell proliferation
 - An extensive list of genes that exhibits hypermethylation has been reported to occur at the earlier stage of prostate cancer
 - Overexpression of enhancer of zeste homolog 2 (EZH2), an epigenetic modifier, is linked to the trimethylation of H3K27
- ❖ EZH2 was recently found to be an coactivator of AR when it is phosphorylated
 - Phosphorylation of EZH2 suppresses the methylation of H3K27
- ❖ The coordinate regulation of AR and EZH2 activity still needs to be explored

Nat. Rev. Cancer. 2014, 145, 187-198

Castration-Resistant Prostate Cancer (CRPC)

- **CRPC** is an incurable stage of cancer, where the cancers became resistant to hormone therapy and resumed growth
- Previously known as hormone-refractory prostate cancer or androgen-independent prostate cancer
- ❖ >90 % of patients with CRPC developed metatheses
- ❖ Mean survival time 1-2 years

Cur. Oncor. 2010, 17, 72-79

Proposed Mechanisms of CRPC

- ❖ AR overexpression & continued tumor steroidogenesis
- Promiscuous binding and activation of mutant AR by alternative ligands
- Ligand-independent AR activation via crosstalk with other signaling pathways
- Complete AR-independent mechanisms

Acta Pharmacologica Sinica. 2015, 36, 3-23

Proposed Mechanisms of CRPC

AR overexpression & continued tumor steroidogenesis

- Studies showed that 28% of androgen-independent tumors that developed after hormone therapy had increased AR expression due to AR gene amplification
- Androgens from in situ tumoral synthesis and residual adrenal synthesis
- Decreased level of androgen inactivating enzymes
- CRPC cells became more sensitive due to the lower threshold of androgens

❖ Promiscuous binding and activation of mutant AR by alternative ligands

- Amino acid substitution from AR mutations at the LBD decreased ligand selectivity and specificity
- AR mutations could also caused AR antagonists to induce an agonist role

Acta Pharmacologica Sinica. 2015, 36, 3-23

Proposed Mechanisms of CRPC

❖ Ligand-independent AR activation via crosstalk with other signaling pathways

- AR activation via phosphorylation by AKT, HER2, and Ack1 kinases
- AR activation by binding with long non-coding RNA

❖ AR-independent mechanisms (bypass pathway)

- Inflammatory response triggered by dying cells causes infiltration of B and T cells
- Upregulation of Stat3 signaling and anti-apoptotic protein Bcl-2
- Upregulation of glucocorticoid receptor (GR) drives the expression of a subset of AR target genes necessary for cell survival

Acta Pharmacologica Sinica. 2015, 36, 3-23

Treatments for Prostate Cancer & CRPC

- Watchful waiting or active monitoring
- Radiation therapy
- Radical prostatectomy
- ❖ 1st line hormone therapy (orchiectomy, luteinizing hormone-releasing hormone (LHRH) agonists and antagonist)
- ❖ 2nd line hormone therapy (flutamide, bicalutamide, nilutamide)
- ❖ Abiraterone & enzalutamide castrate-resistant treatment
- Chemotherapy (docetaxel, cabazitaxel, mitoxantrone, estramustine)

American Cancer Society

Androgen Deprivation Therapy (ADT)

- ❖ Use of steroidal and/or non-steroidal hormones to reduce androgen level and inhibit AR function the prostate cancer treatment
- Discovery of chemical castration using estrogen by Charles Huggins published in 1941 won him the 1966 Nobel Prize in Physiology or Medicine
- ❖ Steroidal antiandrogens are rarely used due to off-target actions

Acta Pharmacologica Sinica. 2015, 36, 3-23

Non-steroidal Antiandrogens

$$F_{3}C$$

$$Flutamide$$

- The first non-steroidal antiandrogen (NSAA) marketed in 1983
- \bullet T_{1/2}: 5 6 hours
- * IC₅₀: 1.3 μM
- ❖ Dosage: 750 1000 mg/day
- Side effects: diarrhea, hepatotoxicity

- Developed by Rousel and marketed in 1987 in Europe
- $T_{1/2}$: ~2 days
- * IC₅₀: 0.41 μM
- Dosage: 300 mg/day
- Side effects: nausea, insterstitial pneumonitis, alcohol intolerance, visual disturbance

Bicalutamide

- Patented in 1982 and marketed in 1995 by AstraZaneca
- **❖** $T_{1/2}$: ~7 days
- * IC₅₀: 0.16-0.23 μM
- ❖ Dosage: 50 150 mg/day
- Side effects: fatigue

Cancer cells developed resistance toward these drugs and demonstrated agonist properties

Computational Modeling

PNAS. 2007, 104, 11927-11932

Bicalutamid-bound AR LBD W741L

DHT-bound AR WT

- Two LBD mutations, W741L and W741C, were discovered during bicalutamide treatment
- CN group forms H-bonding with Q711 and R752
- ❖ Amide nitrogen and chiral –OH form H-bonding with L704 and N705
- Mutation: bulky W741 is replaced by L741, more space to accommodate 4-fluorophenyl ring of bicalutamide

PNAS. 2005, 102, 6201-6206

Enzalutamide & Abiraterone

$$F_3C$$
 S
 O
 HN

Enzalutamide

- Developed by Jung (UCLA) and Sawyer (MSK) and marketed by Medivation in 2012
- ❖ 2nd Gen CRPC drug: +5 months survival
- \bullet T_{1/2}: 8-9 days
- ❖ IC₅₀: 21-36 nM
- ❖ Dosage: 160 mg/day
- Side effects: seizures

Abiraterone Acetate

- Developed in the 1990s and marketed by Johnson&Johnson in 2009
- Steroidal CYP17A1 inhibitor (inhibits androgen synthesis)
- $T_{1/2}$: 12-18 h
- ❖ IC₅₀: 2.5 15 nM
- ❖ Dosage: 1000 mg/day
- Side effects: urinary tract infection, diarrhea, hypertension

Enzalutamide Computational Modeling

- A. Bicalutamide (top), enzalutamide (middle), ARN-509 (bottom)
- B. Ligand docking of bicalutamide (gold) in AR W741L (gray)
- C. Ligand docking of enzalutamide (gold) and ARN-509 (cyan) in AR F876L (gray)
- D. MD simulation at 10ns for enzalutamide with AR WT (red) and ARF876L (cyan)
- E. MD simulation at 10ns for ARN-509 with AR WT (red) and ARF876L (cyan)

Elife. 2013, 2, e00499

Targeting the NTD & DBD

❖ Targeting the NTD

- Unstructured NTD makes it a difficult target
- The constitutively active AR splice variants that lack the LBD are reported to be found in prostate cancer patients

- Targets the NTD AF-1 domain
- Blocks N/C interaction
- Blocks interaction of AF-1 with coactivator

❖ Targeting the DBD

- Limited examples due to specificity

Cancer Cell. 2010, 17, 535-546

Wipf Group Strategy

High-throughput Screening Assay to Identify Inhibitors of AR Nuclear Localization in CRPC

❖ Selection of 2GFP-AR expressing cell lines in the C4-2 CRPC cell background

ASSAY and Drug Development Technologies. 2016, 14, 226-239

- A. Effects of 17-AAG on 2GFP-AR and endogenous AR in the C4-2 cells
- B. Effects of 17-AAG on the nuclear localization of 2GFP-AR in the C4-2 cells
- C. Effects of 17-AAG on the nuclear localization of 2GFP-AR compared to endogenous AR in the C4-2 cells

- ❖ 2GFP-AR nuclear localization HCS assay optimization
 - A. Grayscale images of Hoechst-stained nuclei and 2GFP-AR expression in N3 C4-2-2GFP-AR cells
 - B. Nucleus and cytoplasm masks generated by the molecular translocation (MT) image analysis segmentation

ASSAY and Drug Development Technologies. 2016, 14, 226-239

- ❖ 2GFP-AR nuclear localization HCS assay optimization
 - A. Selected object counts per image
 - B. Average 2-GFP-AR intensity in the nuclear 'circ' area
 - C. Average 2-GFP-AR intensity in the cytoplasmic 'ring' mask area
 - D. Mean (circ ring) 2-GFP-AR average intensity difference
 - E. Mean circ:ring 2-GFP-AR average intensity ratio

ASSAY and Drug Development Technologies. 2016, 14, 226-239

❖ 2GFP-AR nuclear localization HCS assay optimization

- A. Charcoal stripped vs complete medium
- B. Microtiter plate type
- C. Cell-seeding density
- D. DMSO tolerance
- E. 17-AAG concentration response
- F. 3-day variability and Z-factor coefficient

ASSAY and Drug Development Technologies. 2016, 14, 226-239

❖ First high-throughput screening to identify small molecules capable of reducing AR nuclear localization in CRPC cells

Table	Table 1. Androgen Receptor Nuclear Localization HCS Assay Protocol								
Step	Parameter	Value	Description						
1	Plate cells	60 μL	3,000 N3 C4-2-2GFP-AR cells						
2	Incubate cells overnight	16-24 h	Culture medium at 37°C, 5% CO ₂ , and 95% humidity						
3	Library compounds/DMSO/DMSO +17-AAG to controls wells	20 μL	Compounds –20 μ M final concentration in well +0.2% DMSO; controls –0.2% DMSO or 0.2% DMSO plus 3.0 μ M 17-AAG						
4	Incubate assay plates overnight	16-24 h	At 37°C, 5% CO ₂ , and 95% humidity						
5	Aspirate media and fix cells	50 μL	3.7% formaldehyde containing 2 μg/mL Hoechst 33342 in PBS without Ca2+ and Mg2+, prewarmed to 37°C						
6	Incubate plates	10-30 min	Ambient temperature						
7	Aspirate fixative and wash 2× with PBS	50 μL	Fixative was aspirated and plates were then washed twice with 50 µL PBS without Ca2+ and Mg2+, 50 µL PBS in well						
8	Seal plates	1×	Sealed with adhesive aluminum plate seals						
9	Acquire images	10x, 0.3NA objective	Images of the Hoechst (Ch1) and AR-GFP (Ch2) were sequentially acquired on the ArrayScan V^{TI} 10x using the XF100 excitation and emission filter set						
10	Assay readout	MCRAID-Ch2	Images were analyzed using the MT image analysis algorithm using the mean circ (nucleus)–ring (cytoplasm) average intensity difference to quantify the AR-GFP localization						

ASSAY and Drug Development Technologies. 2016, 14, 226-239

❖ High-throughput screening of an NIH library of 219,055 compounds

- A. Scatterplot of the mean circ ring average intensity difference intensity data from a single representative HCS assay plate
- B. Overlay scatterplot of the normalized % inhibition data from 30x384-well assay plates from a representative screening operation run
- B. Binned results frequency distribution graph of the normalized % inhibition data from the primary HCS

ASSAY and Drug Development Technologies. 2016, 14, 226-239

- ❖ GFP-AR Nuclear Localization HCS Campaign Summary
- Eliminated cytotoxic and autofluorescent compounds
- 182 compounds confirmed to have reproducible inhibition >50%
- 163 compounds have IC_{50} : <40 µM
- Elimination of compounds: (i) that often interfere with HTC assay, (ii) involved in other signaling pathways, (iii) <95% purity, (iv) IC_{50} : >10 μ M
- 23 compounds were subjected to further analysis

HCS phase and category	Number of compounds	% of total					
Primary screen							
NIH MLSCN compound library	219055	100					
Cytotoxic outliers, SOCb zsc <-4	828	0.38					
Ch1 Fld outliers, MNTle and MNAlf zs >4	2,591	1.18					
Ch2 FI outliers, MCTIg, MRTIh, MRAli zs >4	150	0.07					
Primary HCS actives,% inhibition MCRAIDj >60%	980	0.45					
Active confirmation							
Mean% inhibition MCRAID >50% (n=3)	182	18.6 (980)					
IC ₅₀ hit confirmation							
IC50<1 μM	2	1.1 (182)					
IC50 > 1 but <10 μM	65	35.7 (182)					
IC50 > 10 but <40 μM	96	52.7 (182)					
IC50 > 40 μM	19	10.4 (182)					

NIH molecular library screening center network (MLSCN) compound library. FI, fluorescence intensity; MCRAID, mean circ-ring average intensity difference Ch2; MCTI, mean "circ" total intensity Ch2; MNAI, mean nuclear average intensity Ch1; MNTI, mean nuclear total intensity Ch1; MRAI, mean "ring" average intensity Ch2; MRTI, mean "ring" total intensity Ch2; NIH, National Institutes of Health; SOC, selected object/cell count per image; zs, z-score.

ASSAY and Drug Development Technologies. 2016, 14, 226-239

High-throughput Screening (HCS)

ASSAY and Drug Development Technologies. 2016, 14, 226-239

Wipf Group Strategy

Discovery of JJ450

Zones of Structural Modifications

- ❖ Zone 1: ortho-substituent on the phenyl ring is important for activity
- Zone 2: sterically bulky piperazine is superior to flexible, unsubstitued or bridged analogues
- ❖ Zone 3: carbonyl is not required; sulfonamide or amine are tolerated
- ❖ Zone 4: thioether oxidation reduced activity; cyclopropane significantly improved EC₅₀
- ❖ Substituted phenyl groups are equipotent with 3,5-dimethylisoxazole

ACS Med. Chem. Lett. 2016, 7, 785-790

Synthesis of DMI-containing Analogs

ACS Med. Chem. Lett. 2016, 7, 785-790

*EC50 values reported in μM

Synthesis of Piperazine Analogs

ACS Med. Chem. Lett. 2016, 7, 785-790

*EC50 values reported in μM

Synthesis of Heteroatom Analogs

a. 2-chloroacetyle chloride, Et₃N, DCM,

b. chloromethanesulfonyl chloride, Et_3N , DCM, rt, O/N, 85 %

ACS Med. Chem. Lett. 2016, 7, 785-790

*EC50 values reported in μM

rt, O/N, 99 %

Synthesis of Bridged Analogs

ACS Med. Chem. Lett. 2016, 7, 785-790

*EC50 values reported in μM

Synthesis of JJ450

ACS Med. Chem. Lett. 2016, 7, 785-790

*EC50 values reported in μM

Wipf Group Strategy

Current Effort

Conclusions

- ❖ A total of 85 new analogs have been synthesized in our lab
- ❖ Development of scaffolds to improve potency and metabolic stability
- Development of a more efficient enantioselective synthesis of analogs
- Understanding the mechanism of action would be very helpful in designing more future analogs

Acknowledgments

- Dr. Peter Wipf
- James Johnson
- Dr. Keita Takubo
- Taber Lewis
- John Milligan
- Wipf group members
- Collaborators at Dept Urology
- Funding obtained from DOD & UPMC Enterprise