Synthesis of Retigabine Analogs & Enamide Oxidation towards Stemona Alkaloids

Ruiting Liu Wipf Group 02/25/2017

Contents

Retigabine analogs

- Introduction to Retigabine and structrual modification
- Synthesis of Retigabine analogs and biological results
- Enamide Oxidation towards Stemona alkaloids
 - Introduction to stemona alkaloids
 - Previous work
 - Proposal of enamide as common intermediate
 - Model study of tricyclic enamide
 - Synthesis of tricyclic enamide and the results of oxidation

Potassium Ion Channel

- Potassium ion channel are membrane proteins that allow rapid and selective flow of K+ ions across the cell membrane, and thus generate electrical signals in cells.
- Voltage-gated K+ channels (Kv channels), open and close upon changes in the transmembrane potential.

Structure of KvAP Voltage-Gated Potassium Ion Channel α-Subunit

Nature 2003, 423 (6935), 33-41

KCNQ Channel

- KCNQ genes encode members of the Kv7 family of K+ channel subunits
- The KCNQ family comprises of five subunits (KCNQ1-5).
- In the nervous system, Kv7.2 to Kv7.5 form the α -subunits of the low-threshold voltage-gated potassium channel
- Most channels are comprised of Kv7.2 and Kv7.3 heteromeric or Kv7.2 homomeric subunits

Pharmacology & therapeutics 90(1): 1-19.

Neuron 53(5): 663-675

Retigabine

- Retigabine is the first potassium channel opener approved by FDA in 2011 for the treatment of partial-onset seizures.
- Recent reports have highlighted retigabine effectiveness in treatment of tinnitus

Retigabine

Three-Dimensional Model of Retigabine Docked to the Active Site of a Kv7.3 Domain

Mol. Pharmacol. 2009, 75 (2), 272-280 Proc. Natl Acad. Sci. USA 110, 9980-9985 (2013).

- Activates all KCNQ2-5 channels
- Retigabine open these channels at more hyperpolarized potentials

Retigabine (RTG)/Ezogabine (EZG) at KCNQ2-5 channels

Epilepsia, 53(3):412-424, 2012

Adverse Effect of Retigabine

- Recent data showed severe side effects associated with retigabine, including urinary retention, blue skin discoloration and retinal abnormalities
- Non specific among KCNQ2-5
- KCNQ4 and KCNQ5 are not involved in the pathology of hyperexcitability-related disorders.
- KCNQ4 is the primary potassium channel in the smooth muscle of the bladder, where it regulates contractility

Expert opinion on drug discovery 8(11): 1429-1437

Adverse Effect of Retigabine

 Recent studies in rats have implicated pigmented dimerization products of retigabine in producing the discolouration

Purple/blue discolouration of the *left* and *right* nail beds of the hands

Epilepsy Curr, 15 (S1) (2015), pp. 339–340 *BMC Oral Health*. 2015; 15: 122.

Previous Modification of Retigabine

Table 1: KCNQ2/3 Current Shift EC50 of NR's Retigabine Analogs

Mole Pharm, 2016, 89 (6) 667-677

Selective KCNQ2/3 channel activators

- Zone 1: incorporating a heteroaromatic group to probe the structure-activity relationship of retigabine
- Zone 2: introducing fluorine that might be responsible for the selectivity
- Zone 3: different carbamates to investigate steric relevance

Synthesis

$$F_3C$$

$$\begin{array}{c} NHCO_2Et\\ NH_2\\ RL648.081\\ 45\% \end{array}$$

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Synthesis

$$R_{1} \cap NH_{2} + F \cap NO_{2} \cap DMSO, 120 \circ C \cap R_{1} \cap NH_{2} \cap R_{2} \cap R_{1} \cap R_{1} \cap R_{2} \cap R_$$

$$F_3$$
C $NHCO_2i$ -Pr NH_2 NH_2 $RL702.032$ 52%

Results

RL648_81 (EC₅₀ 0.19 \pm 0.02 μ M, n=4-11; red) SF0034 (EC₅₀ 0.60 \pm 0.06 μ M, n=5-21; black)

Mol Pharm, 2016, 89 (6) 667-677

RL648 81 does not activate either KCNQ4 or KCNQ5

Results

EC50 and maximal V1/2 values

Half activation (V1/2) of KCNQ4 currents calculated from normalized G-V Boltzmann curves in presence of 100 nM, 1 μ M and 10 μ M of RL648_73, RL648_86 and RL673_02

Conclusion

- Synthesized a series of retigabine analog
- RL648_81 is 15 times more potent than retigabine, selective towards KCNQ2/3 channel

Stemona Alkaloids

- Over 139 members were isolated from the Stemonaceae plant family, mostly featuring a pyrrolo [1,2-a] azepine
- The roots of those plants are claimed to have antituberculosis, antibacterial, antifungal and antihelmintic properties in traditional chinese medicine

Nat. Prod. Rep., **2010**, 1908

Structural Diversity and Classification

Structures of Interest

Proposed Biogenetic Relationship

Can. J. Chem. **1962**, 40, 455 J. Nat. Prod. **1992**, *55*, 571

20

Tuberostemonone

Tuberstemoninol

Previous Studies of Indole/Enecarbamates Oxidation

J. Org. Chem. 2004, 1704

J. Am. Chem. Soc., 1993, 8867

Acknowledgement

- Professor Peter Wipf
- Wipf group members (Past and present)
- Dr. Steve Geib
- Dr. Thanos Tzounopoulos

