Synthesis and Biological Activities of Mefloquine Analogs

Tingting Mo
Research Topic Seminar
April 25 2009

Outline

- 1. Background
- Antimalarial drug Mefloquine
- Our Analogs
- 2. Efforts towards synthesis of our analogs
- Asymmetric route
- Racemic synthesis through Wittig rearrangement
- 3. Synthesis of our analogs and their biological activities
- 4. Effort towards synthesis of a new analog
- 5. Conclusions

Development of Mefloquine

Ridley, R. G. Nature. 2002, 415, 686

Mechanism of Mefluoquine

Ridley, R. G. Nature. 2002, 415, 686

Molecular Electronic Properties

$$R_3$$
 R_2
 R_1

compd	activity (MfI)	R ₁	R ₂	R ₃
1a	1.00 (dl-erythro)	CF ₃	CF ₃	Н
1b	0.81 (<i>dl-threo</i>)	CF ₃	CF ₃	Н
1c	0.81	CF ₃	CF ₃	OCH ₃
1d	0.17	CF ₃	CI	CI
1e	0.03	CF ₃	CI	Н
1f	NC	CF ₃	Me	Н
1g	NC	CF ₃	F	Н

Mfl: molar ratio of the \mbox{CD}_{50} of mefloquine to the \mbox{CD}_{50} of the test compound

NC: noncurative dose

- •H bond: aliphatic nitrogen to hydroxyl hydrogen
- Quinoline ring plane is susceptible to nucleophilic attack (positive potential)
- •Electron withdrawing groups should beplaced at both the 2 and 8 positions
 - •Electronic features rather than steric factors control the antimalarial potency

Bhattacharjee, A. K.; Karle, J. M. J. Med. Chem. 1996, 39, 4622

Different Activities Between Enantiomers

	Adenosine A ₁	Adenosine A ₂	Adenosine A ₂ Adenosine A ₃			
Source	rat brain	human	human			
Results (K _i)						
(+)enantiomer	6.4 μΜ	1.8 μM	7.7 μM			
(-)enantiomer	202 nM	4.4 nM	6.8 μΜ			

(-)-enantiomer binds to central nervous system adenosine receptors, it's believed to result in the neuropsychiatric symptoms

	D-2 clone		W-6 clone		
compound	IC ₅₀ (nM)	ratio	IC ₅₀ (nM)	ratio	
(+)enantiomer (-)enantiomer	23.4 42.3	1.81	4.09 6.61	1.69	

(+)-enantiomer is more potent than the (-)-enantiomer by a factor of 1.69-1.81

Shepherd, J. *International patent WO98/39003*. **1998**Karle, J. M.; Olmeda, R.; Gerena, L.; Milhoust, W. K. *Exp. Parasitol.* **1993**, *76*, 345

Side Effects of Mefloquine

- Severe central nervous system (CNS) events requiring hospitalization occur in 1:10,000 patients
- Milder CNS events occur in up to 25% of patients
- Dose effect: the higher incidence of adverse events observed when the drug is used at the higher doses needed for treatment
- The drug crosses the blood-brain barrier and accumulates as much as 30-fold in the CNS than in the plasma

Phillips-Howard, P. A.; Kuile, F. O. *Drug Saf.* **1995**, **a**370 Pham, Y. T.; Nosten, F.; Farinotti, R.; White, N. J.; Gimenez. F. *Int. J. Clin. Pharmacol. Ther. 37:*58

Amelioration of Neurotoxicity

Administration of neuroprotective drugs

Reformulation of mefloquine as a pure isomer

 Reengineering of the mefloquine molecule to yield derivatives that are less neurotoxic but retain their antimalarial activity

Speich, R.; Haller, A. N. Engl. J. Med, **1994**, 331, 57 Shepherd, J. International patent WO98/39003. **1998**

Acknowledgement

- Professor Peter Wipf
- Akira Nakamura, Chenbo Wang and other group members
- Damodaran Krishnan
- John B. Williams
- Steven Geib
- Walter Reed Army Institute of Research