Research Topics Seminar

Presenter: Jared Hammill

Advisor: Dr. Peter Wipf

August 1st, 2009

Overview

- Part 1: Solid Phase Peptide Synthesis
 - Background
 - Scotophobin: a storied past
 - Design and synthesis of a BoNT A inhibitor

Overview

- Part 1: Solid Phase Peptide Synthesis
 - Background
 - Scotophobin: a storied past
 - Design and synthesis of a BoNT A inhibitor

- Part 2: Accessing the Bicyclo[3.3.1]nonane scaffold
 - Background
 - Progress
 - Future work

Solid Phase Peptide Synthesis

Introduced in 1963 by Merrifield

-Insoluble solid supports allow excess reagents and unwanted byproducts to be dissolved and washed away

Merrifield, R. B.1963. J. Am. Chem.Soc. , 85, 2149-2154

Solid Phase Peptide Synthesis

Boc SPPS

-TFA to deprotect intermediates and HF for cleavage from resin

Fmoc SPPS

-Piperidine to deprotect intermediates and TFA for cleavage from resin

Merrifield, R. B.1963. J. Am. Chem.Soc., 85, 2149-2154

Microwave Assisted SPPS

- •First reported in the 1940's
- Appears in organic synthesis literature in 1980's
- Pioneered by authors like Gedye, Giguere, and Majetich
- Microwave irradiation allows for reduced reaction times

Microwave Assisted SPPS

Major advantages of microwave irradiation:

- 1)more efficient energy transfer to the reaction mixture instead of the vessel
- 2) allows for homogenous heating
- 3)decreases peptide aggregation on solid support

2009 CEM corporation. "Microwave Chemistry: How it all Works." http://cem.com/page130.html

Scotophobin Chasing a Memory

Early Evidence

- 1965: Four groups showed memory transfer in mammals
 - Three groups hypothesized RNA to be the transfer unit
 - George Unger & Oceguera-Navarro hypothesized a small peptide as the transfer unit

Early Evidence

- 1965: Four groups showed memory transfer in mammals
 - Three groups hypothesized RNA to be the transfer unit
 - George Unger & Oceguera-Navarro hypothesized a small peptide as the transfer unit
- Unger showed transference effect was elimanated upon incubation of the brain extract with chymotrypsin, but not with ribonuclease

Early Evidence

- 1965: Four groups showed memory transfer in mammals
 - Three groups hypothesized RNA to be the transfer unit
 - George Unger & Oceguera-Navarro hypothesized a small peptide as the transfer unit
- Unger showed transference effect was elimanated upon incubation of the brain extract with chymotrypsin, but not with ribonuclease
- Several negative results attempting to repeat the memory transference experiments caused a controversy to emerge
 - However, these experiments assumed RNA was the transfer unit

George Unger

 Unger and colleagues wanted to address some of the controversy by showing the specificity of memory transfer

George Unger

 Unger and colleagues wanted to address some of the controversy by showing the specificity of memory transfer

Theory

Unger proposed that when a pre-synaptic neuron fired, it released a connector peptide. This peptide could be taken up by a nearby post-synaptic neuron, thereby establishing a new neural network. Repeated connections could strengthen the signaling pathway.

George Unger

 Unger and colleagues wanted to address some of the controversy by showing the specificity of memory transfer

Theory

Unger proposed that when a pre-synaptic neuron fired, it released a connector peptide. This peptide could be taken up by a nearby post-synaptic neuron, thereby establishing a new neural network. Repeated connections could strengthen the signaling pathway.

1968

- Unger published a study which received much attention in both the public and scientific communities
- The study concluded that a learned response was transferred from rats to mice and a single peptide was responsible

Brains Removed

Mice receiving extracts from trained rats spent significantly less time in the dark box as compared to mice injected with untrained rat brains

Scotophobin

Past work

- Several isolation and characterization studies led to confirmation of the final pentadecamer structure
- Unger willingly provided the peptide to a variety of groups for testing with mixed results in animal models
- Scotophobin has been previously synthesized via traditional organic chemistry utilizing Merrifield's SPPS techniques
- Last study published 1979, one year after Unger's death

Scotophobin

Past work

- Several isolation and characterization studies led to confirmation of the final pentadecamer structure
- Unger willingly provided the peptide to a variety of groups for testing with mixed results in animal models
- Scotophobin has been previously synthesized via traditional organic chemistry utilizing Merrifield's SPPS techniques
- Last study published 1979, one year after Unger's death

Our contribution

- -Since 1979, advancement in peptide synthesis and characterization should allow us to provide a sample of superior quality
- -Through collaborations with UNC, we will avoid animal models which have shown problems with reproducibility by screening scotophobin and other neuroactive peptides against an array of GPCRs

Optimization

Coupling Agent	Additive	Mass of Product	Overall Yield (%)
РуВор	HOBt	5 mg	3 %
PyBrop	HOBt	15 mg	10 %
DEPBT	None	39 mg	25 %

Optimization

Cocktail:	Overal I	TFA	PhSCH ₃	PhOCH ₃	1,2- EDT	PhOH	H ₂ O	DM S	NH ₄	TIS
Reagent R	3.4%	90	5	2	3	-	-	-	-	-
Reagent K	2.6%	82.	5	-	2.5	5	5	-	-	-
Reagent H	3.3%	82	5	-	2.5	5	3	2	1.5	-
Reagent	23%	89.	3	-	-	2.5	0.5	-	-	4
Reagent J*	22%	87.	3.5	-	2	3.5	2	-	-	1

5

Reagent A corresponds to the cocktail developed by Dr. Banerjee, Reagent J corresponds to the cocktail optimized by myself. TFA (trifluoroacetic acid), 1,2-EDT (1,2-dithioethane), DMS (dimethyl sulfide), TIS (triisopropyl silane)

Final SPPS Conditions

Initial Conditions:

Coupling: Amino acid, PyBOP, HOBt, DIPEA, in DMF (40W, 70°C, 5 min)

Deprotection: 20% piperidine, HOBt, in DMF (50W, 50°C, 3 min)

Cleavage: TFA, PhSCH₃, PhOH, TIPS, H₂O

Results

Scotophobin (34 mg, 22% Yield) was successfully synthesized as confirmed by ¹H, ¹³C, DEPT135, COSY, HMBC, HMQC, and Edmann degradation

Scotophobin 8-15 analogue (46.5 mg, 55% Yield) was successfully synthesized as confirmed by ¹H, ¹³C, DEPT135, HMBC, HMQC, and COSY

Results

B-lipotropin (19.1 mg, 11% Yield) was successfully synthesized as confirmed by ¹H, ¹³C, DEPT135, HMBC, HMQC, and COSY

Substance P Precursor (14 mg, 9% Yield) was successfully synthesized as confirmed by ¹H, ¹³C, DEPT135, HMBC, HMQC, and COSY

Future Work

We are currently awaiting the results of the full GPCR screen before deciding on a future direction of this project

Botulinum Neurotoxin

Design and Synthesis of Peptidic Inhibitor

Botulinum Neurotoxin (BoNT)

a neurotoxic protein

- •First described in the 1820's as a "sausage poison," botulinum is derived from the latin word botulus meaning sausage
- •1895 Emile van Ermengem first isolated the bacterium
- BoNT's are produced by an obligate anaerobe of the genus Clostridium

Clastridium batulinur

- •Clostridium botulinum is a soil bacterium whose spores can survive a variety of climates and is found all over the world
- •Seven different types identified: BoNT (A-G), with BoNT A being the most toxic
- •BoNT's are one of the most poisonous naturally occurring substances, with mouse LD_{50} values in the range of 1–5 ng/kg
- •Making this readily available, very potent potential bio-warfare agent, with **no post-exposure intervention available**
- •BoNT's are composed of two chains: a 100-kDa heavy chain joined by a disulfide bond to a 50-kDa light chain

Montecucco C, Molgó J (2005). "Botulinal neurotoxins: revival of an old killer". Current opinion in pharmacology 5 (3): 274–9.

Mode of Action

- Proteolytically cleaves
 SNAP-25, syntaxin or
 synaptobrevin at a
 neuromuscular junction,
 preventing vesicles from
 anchoring to the membrane
 to release acetylcholine
- By inhibiting acetylcholine release, the toxin interferes with nerve impulses and causes flaccid (sagging) paralysis of muscles

http://en.wikipedia.org/wiki/Botulinum_toxin

Proposed Mechanism of Action

Kumaran et al., J. Biol. Chem., 283 (2008), 27, 18883-18891

Inhibitor Design

In addition, Desigan
Kumaran et al., found that
tetramers containing RR
have a high binding affinity

Kumaran et al., J. Biol. Chem., 283 (2008), 27, 18883-18891

Inhibitor Design

"If I have seen further, it is by standing on the shoulders of giants."~ Sir Isaac Newton

Interactions of Dab(DNP)

- H-bonding interactions through water with Ser259, GLu164, His227, Tyr366, Glu224, His223
- Moderately favorable steric interactions with binding pocket

Interactions of Arginine

- Potential electrostatic interactions with Thr220, Thr215, Asp216, Asp37
- Favorable steric interactions with binding pocket

Interactions of Tryptophan

- Fits perfectly in binding pocket, locking inhibitor in binding site
- An aromatic residue is commonly found directly preceding the N-terminus of a 3_{10} helix

Interactions of Threonine

- Favorable electrostatic interaction of the backbone carbonyl of ASP307 with free hydroxy
- Negative interaction of free hydroxy with side chain of ASP307
- Ala is more commonly found in this position of a 3_{10} helix than Thr

Interactions of DAB

- Direct electrostatic stabilization to Gln163
- Electrostatic interaction deriving from the backbone of Lue203, Val70, Ile161, the side chain of Asp159, and several water molecules
- May be further stabilized by the potential for H-bonding with its own carbonyl
- Good steric fit with Dab(DNP) residue

Interactions of Methionine

- Potential electrostatic interaction with backbone of Glu257
- Sterically fits in hydrophobic region between the Trp and the Dab(DNP) residues
- Methionine, although usually a helix-promoting residue, is underrepresented in 3₁₀ helices and Asp is more commonly found at this residue

Interaction of Leucine

- No direct interactions of side chain
- Leu is generally a helix-promoting residue. It is commonly underrepresented in 3_{10} helices and Ile may be a better substitution

Future directions

- Optimization of reduction
- Testing proline catalyzed Aldol
- Synthesis of more highly functionalized bicyclo[3.3.1]nonane analogues

Aknowledgements

Dr. Peter Wipf

Funding:

• Dr. Billy Day

- NIH

- Rachel Byerly
- Chad Hopkins
- The Wipf Group

Solid Phase Peptide Synthesis:

- Dr. Abhisek Banerjee
- Kazi Islam
- John Hempel
- Bryan Roth PhD, MD (UNC Chapel Hill
- Dr. Jonathan Nuss (Ft. Detrick)