Synthesis and Biological Evaluation of Protein Kinase D Inhibitors

Celeste Alverez Topic Seminar October 26, 2013

Celeste Alverez @ Wipf Group

Protein Kinase D (PKD)

- A novel family of serine/threonine kinases and diacylglycerol (DAG) receptors belonging to the Ca²⁺/ calmodulin-dependent kinase (CaMK) superfamily
- Composed of 3 isoforms:
 - PKD1 (PKC *µ*)
 - PKD2
 - PKD3 (PKC ν)

PKD Structure

(PKD/PKCµ)

Fu, Y. EMBO Reports, **2011**, 12, 785.

Isoform Similarity

- PKD1 and PKD2 have 69% overall identity
 - 91% identity at the kinase domain
- PKD1 and PKD3 have 70% overall identity
 - 94% identity at the kinase domain
- PKD₂ and PKD₃ have 68% overall identity
 - 91% identity at the kinase domain

	PKD3		C1a		C1b)		PH		Kinase	
Percentage identity	PKD1	50	90	29	80	47	59	65	94	74
	PKD2	53	84	36	82	34	56	65	91	74

Celeste Alverez @ Wipf Group

PKD Homology modeling

- Necessary due to lack of crystal structure
- Kinase domain homology model was generated for PKD1, PKD2, and PKD3
 - PKD1 and PKD2 focused on
- PKD1 model based on crystal structures of CHK2
 - 39% homology
- PKD2 and PKD3 models based on PKD1 model

Celeste Alverez @ Wipf Group

Kim Haas unpublished work.

PKD Homology modeling

- Key difference between PKD1 and PKD2 in the ATP binding pocket, near the Gly rich loop there are 3 Ile to Val residues switched
- Key difference between PKD2 to PKD3 in the ATP binding pocket, there is only one of the Ile to Val residues switched

Roles of PKD

• Under normal physiological conditions

- Apoptosis
- Proliferation
- Survival
- Cell motility
- Gene transcription
- Cell signaling
- Secretion/cellular trafficking
- Immune response
- Abnormal regulation
 - Implicated in various cancers
 - Prostate, pancreatic, head and neck, colon, breast, ect.
 - Over activity promotes angiogenesis and metastasis in tumors
 - Cardiac hypertrophy

Adapted from Kara George-Rosenker by Wang, Q. J. TRENDS Pharmacol. Sci., 2006, 27, 317.

Adapted from Kara George-Rosenker by Wang, Q. J. TRENDS Pharmacol. Sci., 2006, 27, 317.

Adapted from Kara George-Rosenker by Wang, Q. J. TRENDS Pharmacol. Sci., 2006, 27, 317.

LaValle, C.R., Biochim. Biophys. Acta, 2010. 1806 183.

PKD Role

Luo, J., Cell, **2009**, 136, 823.

Altered Expression of PKD in Cancer

PKD Isoform	Cancer Type	Expression	Effect	
PKD1	Breast	Decreased	Correleated to more invasive tumors	
	Basal Cell Carcinoma	Increased	Linked to increased proliferation	
	Gastric	Decreased		
	Leukemia	Decreased		
	Pancreatic	Increased		
	Prostate	Increased/Decreased	Decreased in androgen- independent tumors	
PKD2	Colon	Increased		
	Gastric	Increased		
	Glioblastoma	Increased	Level of expression correlated to tumor grade	
	Lymphoma	Increased/Decreased		
PKD3	Prostate	Increased	Level of expression correlated to tumor grade	

10/26/2013 18

LaValle, C.R., *Biochim. Biophys. Acta*, **2010**, *1806*, 183. Sundram, V., *Mol. Cancer Res.*, **2011**, *9*, 985.

Azoitei, N., Neuro Oncol., **2011**, 12, 710. Mihailovic, T., Cancer Res., **2004**, 64, 8939. Shabelnik, M. Y., Exp. Oncol., 2011, 33, 206.

PKD2 in Colon Cancer - RNA Expression

Wei, N.; Chu, E.; Wipf, P.; Schmitz, J., Manuscript Submitted. John Schmitz unpublished data.

PKD2 in Colon Cancer - RNA Expression

PKD in Colon Cancer – Protein Expression

Western blot showing PKD isoform expression in two colorectal cell lines

Immunohistochemical staining for PKD2 protein expression in human normal colon epithelium and colorectal tumor

PKD2 in Colon Cancer

Celeste Alverez @ Wipf Group

Wei, N.; Chu, E.; Wipf, P.; Schmitz, J., Manuscript Submitted. John Schmitz unpublished data.

PKD as a Therapeutic Target

Celeste Alverez @ Wipf Group

Sundram, V., Mol. Cancer Res., 2011, 9, 985.

PKD as a Therapeutic Target

Celeste Alverez @ Wipf Group

Sundram, V., Mol. Cancer Res., 2011, 9, 985.

PKD Inhibitors

Upon review of the literature 11 PKD inhibitor chemotypes were identified:

1. Meredith, E. L., J. Med. Chem., 2010, 53, 5400. 2. Tandon, M., PLoS ONE, 2012, 7, e44653.

3. Harikumar, K. B., Mol. Cancer Ther., 2010, 9, 1136. 4. Evans, I. M., Biochem, I., 2010, 429, 565.

George, K. M., Pharmaceutics, 2011, 3, 186. 6. Gschwendt, M., FEBS Lett., 1996, 392, 77.

26

PKD Inhibitors(+)<td

many kinases

In vitro inhibition of PKD1 by known inhibitors

Compounds	IC ₅₀ (nM)		
Staurosporine	40		
Gö6976	20		
K252a	7		
BPDKi	1		
CRT0066101	1		
CID755673	182		

Celeste Alverez @ Wipf Group

LaValle, C. R. et al Biochim. Biophys. Acta, 2010, 1806, 183.

In vitro inhibition of PKD1 by known inhibitors

Compounds	IC ₅₀ (nM)
Staurosporine	40
Gö6976	20
K252a	7
BPDKi	1
CRT0066101	1
CID755673	182

Celeste Alverez @ Wipf Group

many kinases

LaValle, C. R. et al Biochim. Biophys. Acta, 2010, 1806, 183.

PKD Inhibitors

•ATP competititve •Non PKD specific •Gö6976 is more selective for PKC •Staurosporine and K252a inhibit many kinases BPKDi •ATP competitive •Selective for PKDs •100% inhibition at 1 μ M

CRT0066101 •ATP competitive •Selective for PKDs •Cellular IC₅₀ of 0.5 μ M in PANC-1 cells •Orally bioavailable •Effective *in vivo* against pancreatic cancer

<i>In vitro</i> inhibition o	of PKD1 by	known inhibitors
------------------------------	------------	------------------

Compounds	IC ₅₀ (nM)
Staurosporine	40
Gö6976	20
K252a	7
BPDKi	1
CRT0066101	1
CID755673	182

LaValle, C. R. et al Biochim. Biophys. Acta, 2010, 1806, 183.

Celeste Alverez @ Wipf Group

Sharlow, E. R. PLoS ONE, 2011, 6, e25134.

IMAP - Immobilized metal ion affinitybased fluorescence polarization detection

- Used for kinases and phosphatases
- Homogeneous
- High throughput (>40,000 compounds/day)

31

Celeste Alverez @ Wipf Group

Sharlow, E. R. PLoS ONE, 2011, 6, e25134.

HTS Hits

Celeste Alverez @ Wipf Group

10/26/2013 33

Sharlow, E. R. *PLoS ONE*, **2011**, *6*, e25134.

Acknowledgements

- Dr. Wipf
- Dr. Jane Wang
 - Dr. Manuj Tandon, Evan Carder
- Dr. Edward Chu and Dr. John Schmitz
- Pitt NMR facility
- Pete Chambers (QC/LCMS)
- Wipf Group members past and present

