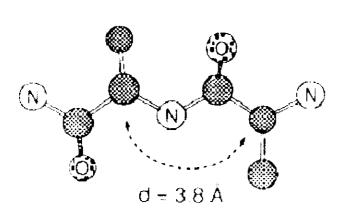
Toward the Synthesis of E-Alkene Peptide Isosteres

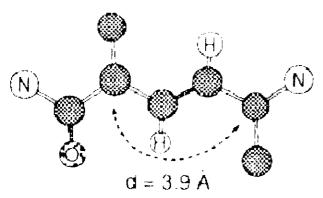
Bryan Wakefield Research Topic Seminar

Outline

- Introduction to Peptide Isosteres
 - E-Alkene Peptide Isosteres
- Synthesis of E-Alkene Isosteres
- Synthesis of Aziridines
- Previous Wipf Group Work
- Current Approach

Peptide Mimetics

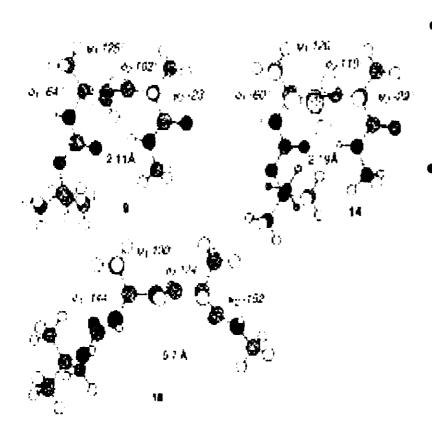

- Expected to have the same biological activities of their natural counterparts, due to their structural similarities.
- Should posses great metabolic stability.
- Replacement of the amide bond has been a focus of this work.
 - To increase rigidity of the molecule
 - Mimic β-turns


Alkene Dipeptide Mimetics

Fujii, N. JOC 2002, 67, 6162

- Used to eliminate trans/cis conversion of the amide bond
- Replaces the amide bond, thus increasing metabolic stability by eliminating a site of hydrolysis.

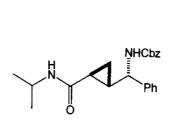
Comparing *E*-Alkene Isosteres to Amide Bonds

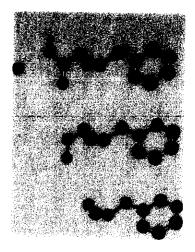


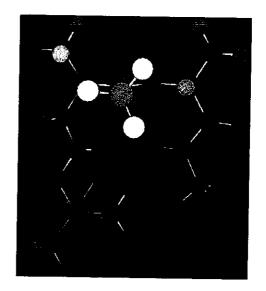
 Alkenes closely resemble amides in bond length, angle and rigidity.

Wipf, P, JOC 1994, 59, 4875

β-Turn Mimics




- More highly substituted E-Alkenes mimic β-turns better.
- The β-turn is caused by A^{1,3} and A^{1,2} strain.


Wipf, P, JOC 1998, 63, 6088

Work in the Wipf Group

- Mimetics used in the Wipf group include:
 - cyclopropanes
 - vinyl CF₃
 - E-alkenes.

Routes to *E*-Alkene Dipeptide Isosteres

Anti-S_N2' Cuprate Addition

Rearrangements

OMS
$$R^1$$
 CO_2R^2 R^2 R^3 CO_2R^2 R^3 R^3 R^3 CO_2R^2 R^4 R^3 R^3

Fujii, N. JOC 2002, 67, 6162

Metal Halide Aziridine Openings

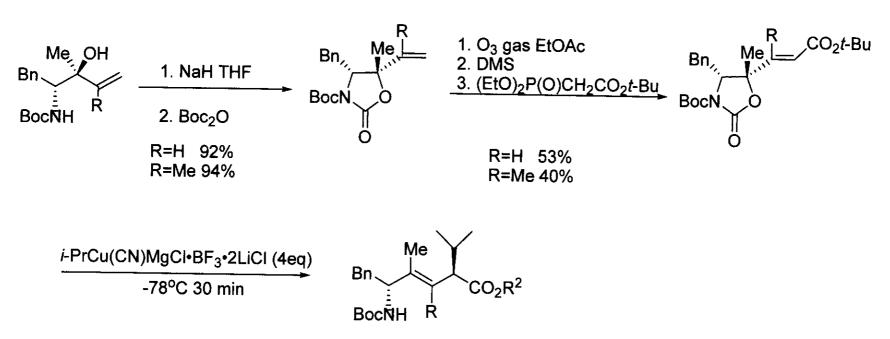
Boc
$$LiX$$
Amb. 15
 -20° C, Acetone

X=CI 84%
X=Br 94%
X=I 70%

X=CI 86%
X=Br 94%
X=I 72%

R=Bu^t

X=CI 82%
X=Br 87%
X=I 67%


Righi, G. Tet Let 2002 43, 5867

E-Alkene Peptide Isosteres via Anti-S_N2' Cuprate Additions

Fujii, N. Org Let 2002, 7, 1055

Fujii, N. JOC 2002, 67, 6162

E-Alkene Dipeptide Isosteres via Oxazolidinone Opening

Fujii, N. Org Let 2002, 7, 1055

Halide Aziridine Openings and Cuprate Additions

- 1. IZn(CN)CuCH₂CH₂CO₂Me•2LiCl
- 2. IZN(CN)CuCH₂CH₂CO₂Bn•2LiCI

Fujii, N. JCS Perkin Trans 1 2001, 2445

E-Alkene Peptide Isosteres via [3,3] Sigmatropic Rearrangement

Wai, J Tet Let 1995, 36, 3461

Ireland-Claisen Rearrangement

Etzkor, F.A. JOC 2003 68, 2343

E-Alkene Peptide Isosteres via Wittig-Still Rearrangement

Wittig-Still Rearrangement

80% combined yield

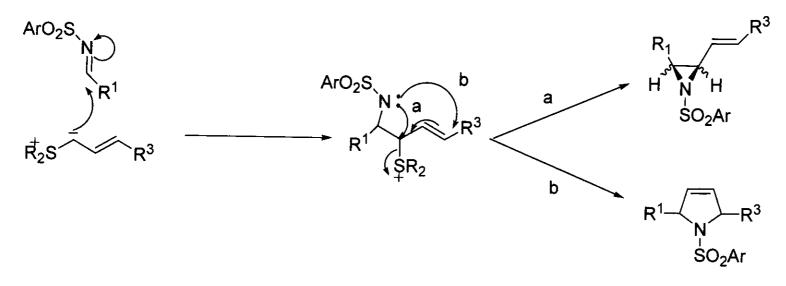
Bol, K.M. Tet 1992, 48, 6425

Aziridine Formation via Sulfur Yildes

Hou, X.L. Chem Comm 1997, 1231

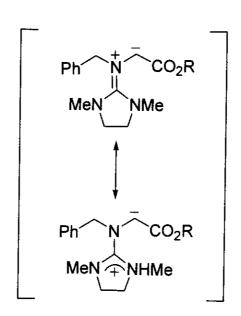
Trans/Cis 63/37

Hou, X.L. JOC 1996, 61, 4641


Aziridine Formation via Sulfur Ylides cont.

SES
$$Rh_2(OAc)_4$$
 (1mol%)
Ph N_2 S 20mol%

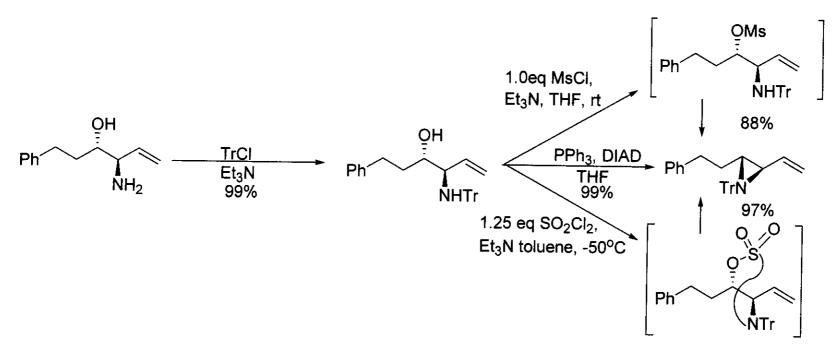
X Yield(%) Ratio (Trans:Cis)
 NEt₂ 91 2:1
 OEt 57 1:3


Aggarwal, V.K. JOC 1996, 61, 8368

Mechanism of Aziridine Formation via Sulfur Ylides

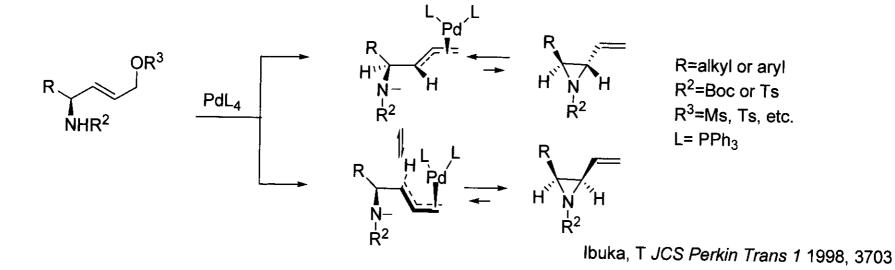
Hou, X.L. JOC 1996, 61, 4641

Aziridine Formation via Guanidinium Ylides

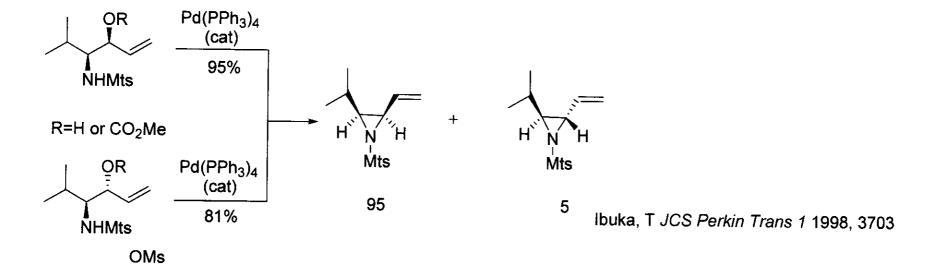


Guanidinium ylide

Ishikawa, T. JACS 2001, 123, 7705


N-H Aziridine Formation via Displacement

Aziridine Formation via Displacement



Somfai, P Tet 2002, 58, 5979

Pd Mediated Aziridine Formation

Pd Mediated Aziridine Formation

Displacement and Pd Isomeration

 $R=Pr^i R_2=Mts$

R=Buⁱ R₂=Ts

R=Buⁱ R₂=Pmc

R=Bn R₂=Mts

Mixtures favoring trans

92:8 to 96:4

Pd Mediated Isomerization

Previous Group Work: Vinyl CF₃

P. Wipf, T. Henninger, and S. Geib

Previous Group Work: Aziridine Opening on Solid Support

Biological Activity of L-685,458

L-685,458

- Specific γ -secretase inhibitor, thus lowering the amount of A β protein
- Functions as a transition state analogue mimic at the catalytic site of an aspargyl protease.