Oxidative C-H Bond Functionalization and Development of a Dynamic Combinatorial Library Using Pyrrolo[1,3]-Diazepines

Brandon Parks Wipf Group Topic Seminar March 17th, 2012

Why 1,3-Diazepines?

- Relatively unstudied scaffold
- Potential biological activity

Boks, G. J.; Tollenaere, J. P.; Kroon, J. *Bioorg. Med. Chem.*, **1997**, *5*, 535. Wang, L; Hosmane, R. S.; *Bioorg. Med. Chem. Lett.*, **2001**, *11*, 2893. Dieltiens, N.; Claeys, D. D.; Allaert, B.; Verpoort, F.; Stevens, C. V. *Chem. Commun.*, **2005**, 4477.

Traditional Combinatorial Chemistry

- Each library member must be individually synthesized and purified
- Time-consuming and costly
- High-throughput processes help speed-up this process

Traditional Combinatorial Chemistry

Dynamic Combinatorial Chemistry

- Building blocks are linked using <u>reversible</u> chemistry
 - "Theoretical" library
- Library composition governed by thermodynamics, not kinetics
- "Dynamic" library may respond to external influences

For Comprehensive Reviews:
Corbett, P. T.; Lecalire, J.; Vial, L.; West, K. R.; Wietor, J. L.; Sanders, J.K. M.; Otto, S. *Chem. Rev.*, **2006**, *106*, 3652.
Otto, S.; Furlan, R. L. E.; Sanders, J. K. M. *Drug Discov. Today*, **2002**, *7*, 1117.
Ladame, S. *Org. Biomol. Chem.*, **2008**, *6*, 219.
Ludlow, R. F.; Otto, S. *Chem. Soc. Rev.*, **2008**, *37*, 101.
Cougnon, F. B. L.; Sanders, J. K. M. *Acc. Chem. Res.*, **2011**, ASAP.

Dynamic Combinatorial Chemistry

Equilibrium

Library Re-Equilibrates Based On Le Châtelier's Principle!!

Traditional vs Dynamic Combinatorial Chemistry

Traditional

- Each library member must be individually synthesized
- Irreversible reactions
- Solubility doesn't affect library

Dynamic

- "Theoretical" library
- Reversible reactions
- All library members must be soluble
- Template effect affords
 amplification

Corbett, P. T.; Lecalire, J.; Vial, L.; West, K. R.; Wietor, J. L.; Sanders, J.K. M.; Otto, S. *Chem. Rev.*, **2006**, *106*, 3652. Otto, S.; Furlan, R. L. E.; Sanders, J. K. M. *Drug Discov. Today*, **2002**, *7*, 1117. Potyrailo, R.; Rajan, K.; Stoewe, K.; Takeuchi, I.; Chisholm, B.; Lam, H. ACS Comb. Sci., **2011**, *13*, 579.

Examples of Dynamic Combinatorial Libraries

- Covalent:
 - Transesterfication
 - Transamidation
 - Acetal Exchange
 - Thioacetal Exchange
 - Transimination
 - Hydrazone

- Non-Covalent:
 H-Bonding
 - Metal/Ligand
 Interactions

Transesterfication

Acetal Exchange

Conditions: 0.5 mM TfOH, 25 °C, 4 h

Rowan, S. J.; Brady, P. A.; Sanders, J. K. M. *Angew. Chem. Int. Ed. Engl.*, **1996**, *35*, 2143. Brady, P. A.; Bonar-Law, R. P.; Rowan, S. J.; Suckling, C. J.; Sanders, J. K. M. *Chem. Commun.*, **1996**, 319. Rowan, S. J.; Sanders, J. K. M. *Chem. Commun.*, **1997**, 1407. Cacciapaglia, R.; Stefano, S. D.; Mandolini, L. *J. Am. Chem. Soc.*, **2005**, *127*, 13666.

Identification of Neuraminidase Inhibitors

Hochgürtel, M.; Kroth, H.; Piecha, D.; Hofmann, M. W.; Nicolau, C.; Krause, S.; Schaaf, O.; Sonnenmoser, G.; Eliseev, A. V. *Proc. Natl. Acad.* U. S. A., **2002**, *99*, 3382. Matrosovich, M. N., Matrosovich, T. Y.; Gray, T.; Roberts, N. A.; Llenk, H-N. J. Virol., **2004**, *78*, 12665.

Previous Work in the Wipf Group

• Pyrazolotriazinone Exchange:

Wipf, P.; Mahler, S. G.; Okumura, K. Org. Lett., 2005, 7, 4483.

Previous Work in the Wipf Group

Saiz, C.; Wipf, P.; Manta, E.; Mahler, G. Org. Lett., 2009, 11, 3170.

Synthesis of Pyrrolo[1,3]Diazepines

Liang, M.; Saiz, C.; Pizzo, C.; Wipf, P. *Tetrahedron Lett.* **2009**, *50*, 6810. Boonya-udtayan, S.; Wipf, P. Unpublished Results.

Diazepine Exchange Chemistry

Liang, M.; Saiz, C.; Pizzo, C.; Wipf, P. *Tetrahedron Lett.* **2009**, *50*, 6810. Pizzo, C.; Wipf, P. Unpublished Results.

Reductive Desulfurization Optimization

Entry	Condition	Time (h)	Result
1	Raney-Ni (11 equiv.), EtOH 60 °C	2	Desired Mass Observed
2	Raney-Ni (96 equiv.), EtOH, 60 °C	2.5	20% (by-product observed)
3	Raney-Ni (97 equiv.), THF, rt	3	69% (by-product observed)
4	Raney-Ni (129 equiv.), THF, 0 °C	6	85%
5	Raney-Ni (150 equiv.), THF, 0 °C	4	92%

Diazepine Exchange Chemistry

Pyrrole Ester Reduction

Diazepine Dynamic Exchange

Entry	Condition	Time	Result	Entry	Condition	Time	Result
1	0.1 M phosphate-citrate buffer, pH 4, rt & 40 °C	48-72 h	no reactivity	8	5:1 AcOH/H ₂ O, rt	24-48 h	hydrolysis, no product obs.
2	0.1 M acetate buffer, pH 4, rt & 40 °C	48-72 h	no reactivity	9	3:1 methanol/1M HCl _(aq) , rt & 40 °C	24-48 h	hydrolysis, no product obs.
3	0.1 M acetate buffer/methanol (7:3), pH 4, rt	24-48 h	some hydrolysis, no product obs.	10	Amberlite, MeOH, rt & 40 °C	24-48 h	no reactivity
4	PPTs (0.5 equiv.), CH ₂ Cl ₂ , rt	24-48 h	no reactivity	11	SiO ₂ , CH ₂ Cl ₂ , rt	24-48 h	no reactivity
5	TsOH (0.5 equiv.), CH ₂ Cl ₂ , rt	24-48 h	no reactivity	12	PPTs (1.2 equiv.) benzaldehyde (5 equiv.) 0.1 M, toluene, 80 °C	67 h	hydrolysis and desired product observed
6	TsOH (5 equiv.), CH ₂ Cl ₂ , rt	24-48 h	some hydrolysis, no product obs.				
7	CF ₃ SO ₃ H (5 equiv.), CH ₂ Cl ₂ , rt	24-48 h	some hydrolysis, no product obs.				

* All reactions were run with benzaldehyde (1 mM, 1 equiv.) and diazepine (1 mM, 1 equiv.) except entry 12

Future Directions

- Optimize dynamic exchange chemistry
 - Time, catalyst, temperature, concentration
- Analyze "dynamic combinatorial library" using HPLC and LC-MS
- Apply exchange chemistry to a "library" of aldehyde building blocks
 - Aryl, alkyl, heterocyclic, etc...
 - Ketones?

Photocatalyzed Tertiary Amine C-H Bond Functionalization

Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev., 2011, 40, 102.

Popular Photocatalysts

• Photocatalyst properties are extremely "tunable"

Tucker, J. W.; Stephenson, C. R. J. *J. Org. Chem.*, **2012**, *77*, 1617. Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev., **2011**, *40*, 102.

Photoredox Catalyzed Iminium Formation

Condie, A. G.; González-Gómez, J. C.; Stephenson, C. R. J. *J. Am. Chem. Soc.*, **2009**, *132*, 1464. Freeman, D. B.; Furst, L.; Condie, A. G.; Stephenson, C. R. J. Org. Lett., **2012**, *14*, 94.

Oxidative α-Amino C-H Bond Arylation

McNally, A., Prier, C. K.; MacMillan, D. W. C. Science, 2011, 334, 1114.

Proposed Mechanism

McNally, A., Prier, C. K.; MacMillan, D. W. C. Science, 2011, 334, 1114.

Oxidative α-Amino C-H Bond Arylation of Pyrrolo[1,3]-Diazepines

Tropylium-Mediated C-H Bond Functionalization

Proposed Mechanism

Tropylium-Mediated Cyanation of Pyrrolo[1,3]-Diazepine

Entry	Conditions	Result
1	rt	no reaction
2	80 °C	B observed by ¹ H NMR
3	120 °C	B observed by ¹ H NMR
4	1.5 equiv. tropylium tetrafluoroborate 120 °C	B observed by ¹ H NMR
5	3.0 equiv. tropylium tetrafluoroborate 120 °C	B observed by ¹ H NMR
6	no tropylium tetrafluoroborate 120 °C	27% B
7	no tropylium tetrafluoroborate 18-crown-6 ether, 120 °C	61% B

 * All reaction were performed using 2 equiv. KCN with a diazepine concentration of 0.17 M

Tropylium-Mediated Cyanation of Pyrrolo[1,3]-Diazepine

Future Directions

- Utilize other more reactive photocatalysts
- Utilize other diazepine derivatives to promote reactivity
- Similar oxidative reactions could provide opportunities for functionalization

Acknowledgements

- Dr. Wipf
- Wipf Group Members Past and Present
- NMR and MS facilities
- NIH, University of Pittsburgh Arts and Sciences Fellowship for Funding

