The Golden Age of Chemistry

Maciej A. Walczak Wipf Group November 11, 2006

Vaciej Walczak @ Wipf Group

Gold – Basic Facts

-Gold is known in following oxidation states: -1, **0**, +**1**, ([Xe] $4f^{14} 5d^{10}$), +2, +**3** ([Xe] $4f^{14} 5d^{8}$), +5

- Complexes of Au(I) are usually 2-coordinate, linear, 14-e species whereas Au(III) complexes are typically 4-coordinate, square-planar, 16e (compare other d^{10} and $d^{8} - [Ag(CN)_{2}]^{-}$, Ph₃PAuCl or [Ni(CN)₄]²⁻, [Rh(CO)₂Cl₂]⁻)

$$Li[AuMe_{2}] \xrightarrow{Mel} Ph_{3}P Ph_{3}PAuMe_{3} \xrightarrow{+ MeLi} Ph_{3}P Li[AuMe_{4}]$$

 $-\pi$ -complexes of Au(I) and Au(III) are thermally unstable while Cp-complexes show typically η^1 -binding mode (highly fluxional at rt) – weak back-bonding is observed

-Relative stabilities of
$$[Me_3PAuL]^+$$
 complexes have been calculated
 $CH_2CI_2 (+63) < H_2O (+44) < HCCH (+38) < MeOH (+24) < CH_3CCH (+18) < CH_3CCCH_3 (0) < Me_2S (-18) < PPh_3 (-114)$
Teles *ACIEE* 1998, *37*, 1415

-Among neutral $M(CH_2CH_2)$ complexes M = Cu, Ag, Au, gold is the strongest binder

Maciej Walczak @ Wipf Group

Relativistic Effects in Gold

-Among heavy metals, gold shows largest relativistic effects

-The influence of relativistic effects can be illustrated be comparing Ag and Au

-Energies of *s* and *p* orbitals are lowered but energy of *d* orbitals is raised

-Gold forms shorter and more covalent bonds

-Destabilization of 5*d* orbital in Au may explain tri- and pentavalency of Au

-Yellow color of gold can be also explained by relativistic effects

Relativistic contraction of 6s shell

Pyykkö ACIEE 2004, 44, 4412

Stoichiometric Reactions of Gold

- Grignard and lithium reagents undergo ligand exchange with Au(I) and Au(III) halides

 $AuBr_3 + 2 EtMgBr \longrightarrow Et_2AuBr + 2 MgBr_2$

-R₃Au and RAu are unstable in the absence of stabilizing ligands

-Highly nucleophilic phosphorus ylides are able to displace almost any ligand on Au

L Au Cl + R_3PCH_2 \longrightarrow [L Au CH₂PPh₃] Cl

-Oxidative addition of X_2 or RLi to Au(I) is a common process to obtain Au(III)

-Compounds of type R-Au-L are air and moisture stable but can be decomposed under acidic conditions

-Such exotic species as tetragoldmethane can be obtained in a stable form

-Many compounds of gold show tendency to form molecular clusters that eventually is converted into molecular metal

Application of AgNP

- -Catalytic Oxidation of CO to CO₂
- -Removal of alkylamines (Fe₂O₃-supported AuNPs) or dioxins (La₂O₃-supported AuNPs)
- -Low-concentration sensors of H_2 and CO (Co_2O_3 -supported AuNP)

Astruc ACIEE 2005, 44, 7852

Typical Gold Catalysts

-Ph₃PAuCI (commercially available) is a common Au(I) precatalyst that can be converted into cationic gold by reactions with silver salts

Ph₃P-Au
$$Cl$$
 Au-PPh₃ + AgX \longrightarrow Ph₃PAu⁺ X⁻ + AgCl
X = SbF₆, BF₄, OTf, etc

- $\ensuremath{\mu}\xspace$ -Oxo-complexes of gold have also found applications in catalysis

Inorg. Chem. 1993, 32, 1946

-Anhydrous $AuCl_3$ and $NaAuCl_4 2H_2O$ are common sources of Au(III)

-Various Au(I) carbene complexes are also known to be catalytically active Maciej Walczak @ Wipf Group 6

Au-Catalyzed Small Ring Rearrangements

• Early examples of strain-driven rearrangements using catalytic amounts of Au (III) involved very strained molecules (for example, Gassman JACS 1972, 94, 7741)

• Recently, a highly efficient rearrangement of alkynylcyclopropanols amd cyclobutanols was described (Toste *JACS* **2005**, *127*, 9708)

• Reaction proceeds via 1,2-alkyl shift mechanism where the A^{1,3} strain interactions control the migratory preference

Gold-Catalyzed Rearrangements of Enynes - a Mechanistic Puzzle

Echavarren Chem. Eur. J. 2006, 12, 5916

Au-Catalyzed Cycloisomerizatin of Alkynes

Putative carbocation X can be either trapped intramolecularly or can undergo 1,2-alkyl shift

Gold-Catalyzed Rearrangements of Enynes – a Mechanistic Puzzle

Echavarren *ACIEE* **2004**, *43*, 2402 Echavarren *Chem. Eur. J.* **2006**, *12*, 1677

Nucleophilic Trapping

Maciej Walczak @ Wipf Group

Kozmin *JACS* **2005**, *127*, 6962

Trapping of Au-Carbene Intermediate

Au-Catalyzed Cycloisomerizatin

PhO₂S

-Au-promoted cycloizomerization followed by trapping with electron-rich aromatic afforded Friedel-Crafts-type products

Genét ACIEE 2006, 45, 7427

OMe

Maciej Walczak @ Wipf Group

Au-Catalyzed Prins Reaction

Echavarren ACIEE 2006, 45, 5452

Incorporation of strained carbocycle into the substrates leads to ring-expanded product

Ene-Ynamide Isomerization

Maciej Walczak @ Wipf Group

Au-Catalyzed Rautenstrauch Reaction

Vinyl propargyl esters undergo metal catalyzed rearrangement to cyclopentenones (Rautenstrauch *JOC* **1984**, *49*, 950)

Same transformation can be carried out using gold(I) catalyst that selectively transfers chirality of non-racemic substrates to cyclopentenone skeleton Toste *JACS* **2005**, *127*, 5802

High selectivity of was atributed to heliciy of pentadienyl cation resulting from Lera *JACS* **2006**, *128*, 2434

Au(I)-Promoted Rearrangement of Propargyl Esters

Propargyl esters undergo Au(I) promoted rearrangements followed by trapping with styrenes

Mechanistic proposal is consistent with the pathway favoring formation of carbene

Toste JACS 2005, 127, 18002

11/25/2006

Au(I)-Catalyzed [4+3] Annulation

Reaction Scope:

Key Features:

 Pt(II) and Ru(II) gave desired product in moderate yield
 only *trans* metylstyrenes underwent stereospecific reaction whereas *cis* gave 1:0.8 diastereomeric mixture

Toste JACS 2006, 128, 14480

Highly-Selective Claisen Rearrangements

Enol – Alkyne Cyclization

- Typical conditions for Conia-ene reaction require activation by heat, strong acid or base

-Gold-catalyzed version of ene reaction proceeds under relatively mild conditions

Catalytic Addition of 1,3-Dicarbonyl Compounds

Au(I)-Catalyzed [4+2] Annulation

CC bond formtin forcesses followed by Trapping of oxabicyclic scaffolds

Intramolecular cyclization can be also carried out using Cu(OTf)₂

Benzannuklation reactio proceeds also with dimethylacetals (3equiv of H₂O added)

DFT calculations provide support for formation of oxonianaphtalene aurate. However, formal [4+2] cycloaddition proceeds via Huisgen [3+2] cycloaddition Straub *Chem. Comm.* **2004**, 1726 Maciej Walczak @ Wipf Group

Yamamoto *JACS* **2002**, *124*, 12650 Yamamoto *JACS* **2004**, *126*, 7458 Yamamoto *JOC* **2005**, 1705, 2682

Au(I)-Catalyzed [3+2] Cycloaddition

Formal AuBr₃-catalyzed [3+2] cycloaddition was reported as a major pathway in reaction carried out at elevated temperatures

Extension of Au-Catalyzed Domino Processes

Shibata Synlett 2006, 411

Au-Catalyzed Benzannulation

In the presence of intramolecular alkyne acceptor, benzofurane scaffold can be obtained Hashmi *OL* **2001**, *3*, 3769

Mechanistic Proposal

Low-temperature ¹H NMR as well as trapping experiments indicated intermediacy of arene oxide Hashmi *ACIEE* **2005**, *44*, 2798

According to DFT calculations, **Diels-Alder** pathway is **thermodynamically** favored whereas **carbene** mechanism is **kinetically** favored

Hashmi Int. J. Quant. Chem. 2007, 107, 359

Synthesis of Nitrogen-Containing Heterocycles

Yields: 15-98% Arcadi *JOC* **2000**, *68*, 6959

Synthesis of Furans

28

Schmalz ACIEE 2006, 45, 6704

Au(I) has proven to be superior to catalysts Maximi Waks Zaki @I) Wipt @ (Dupr lanthanide salts

Synthesis of Oxazoles and Furans

Aromatic and aliphatic substituents are tolerated

Mostly esters and ketones are suitable substrates

Kirsch OL 2005, 7, 3925

"Dimerization" of terminal alkynes can be carried out on substrates with alkyl, ether and ester functionalities (yields 35-50%)

Gasparrini JACS 1993, 115, 4401

Only terminal alkynes are suitable substrates

Aromatic and aliphatic ketones furnished oxazoles in good yields (48-95%)

Hashmi OL 2004, 6, 4391

Au-Catalyzed Arene Synthesis - CH Activation

Au (III) is capable to promote electrophilic activation of allenyl ketones followed by CH insertion and addition to enones

-Gold is a superior catalyst in cycloisomerization reactions

-Putative furyl-gold intermediate can be trapped in an intramolecular reactions with alkocohol

-β-Hydride elimination is rarely observed in Au-catalyzed reactions

11/25/2006

Direct Activation of Aromatic CH Bonds

-Kharasch showed that anhydrous AuCl₃ can promote electrophilic exchange of H in various benzene derivatives Kharasch *JACS* **1931**, *53*, 3053

-Introduction of stabilizing ligands (2,6-lutidine) led to isolation of stable complexes

Yasutake J. Chem. Soc. Dalton Trans. 2001, 2330

-Reetz reported A-catalyzed hydroarylation of unactivated ane electron-defficient alkynes

Reetz EJOC 2003, 3485

Activation of Indole CH Bonds

Echavarren ACIEE 2006, 45, 1105

-Use of more electrophilic AuCl₃ leads to formation of thermodynamically less stable products

-Alkenylation via Friedel-Crafts cyclopropyl carbene mechanism are energetically accessible pathways *Chem. Eur. J.* **2005**, *11*, 3155

Au-Catalyzed CH Activation

Nolan ACIEE 2006, 45, 3647

Maciej Walczak @ Wipf Group

11/25/2006

Catalytic Enantioselective Reactions of Au

91-100% 81-96%ee

Hayashi JACS 1986, 108, 6406

Summary

High binding of gold to alkyne promotes various skeletal rearrangement reactions.

Gold shows low tendency to undergo "classical" 2-electron redox reactions and both Au(I) and Au(III) show similar reactivity.

Unlike many transition metals, gold in its common oxidation states shows low propensity for hydride elimination. However, typically for the late transition metals (XI, XII), easy protodemetallation is often observed.

In the presence of hard nucleophiles, gold acts as soft Lewis acid.