Frontiers in Chemistry: Microfluidics and Microreactors in Organic Synthesis

> John Goodell 7/23/11

Flow of Presentation

- Promise of microfluidics
- Trends in literature
- Reactor materials and fabrication
- ➢ Flow regimes
- Benefits of using microreactors
- > Developing applications and advancements

The Promise of Microfluidics/Microreactors

- Frontier: a new field for explorative or developmental activity
 Merriam-Webster Dictionary
- "Reactions performed within a microreactor invariably generate relatively pure products in high yield, in comparison to batch reactions, in much shorter times and in sufficient quantities to perform full structural characterization of the product(s) using spectroscopic techniques."

— Watts and Haswell (Chem. Soc. Rev. 2005, 34, 235)

- "Will microreactors replace the round-bottomed flask to perform chemical reactions in the near future?"
 - Seeberger (Chem. Eur. J. **2006**, *12*, 8434)

Batch Chemistry vs. Microfluidics

Batch

Pilot

Production

Scale-up from batch often posses new challenges requiring re-opimization of reaction conditions.

remain the same.

http://www.princeton.edu/chemistry/macmillan/group-meetings/JEC_microreactors.pdf

Development Trends of Microfluidics in Different Countries (2000-2009)

Web of Science (Thomson Reuters) literature search. Keywords: micro react*, microfluid*, microstructured reactor*, micro chemical, micro thermal, micro heat, micro pump, micro valve.

Chemical Engineering Journal 2010, 163, 165.

Distribution of Microfluidics Literature by Subject Area (2000-2009)

Subject	World records	% of 13,942		
Analytical chemistry	3149	22.52%		
Nanoscience & nanotechnology	3078	22.08%		
Multidisciplinary chemistry	2562	18.38%		
Biochemical research methods	2382	17.09%		
Material science, multidisciplinary	1797	12.89%		
Instruments & instrumentation	1539	11.04%		
Electrical & electronic engineering	1459	10.46%		
Applied physics	1429	10.25%		
Physical chemistry	1124	8.06%		
Mechanics	853	6.12%		
Electrochemistry	676	4.85%		
Mechanical engineering	588	4.22%		
Chemical engineering	584	4.19%		
Fluid & Plasmas physics	553	3.97%		
Optics	474	3.40%		

Web of Science (Thomson Reuters) literature search. Keywords: micro react*, microfluid*, microstructured reactor*, micro chemical, micro thermal, micro heat, micro pump, micro valve.

Chemical Engineering Journal 2010, 163, 165.

Search for Organic Chemistry Related Literature (2002-2010)

Scifinder Scholar 2007 keyword search.

Search for Organic Chemistry Related Literature (2000-2010)

Scifinder Scholar 2007 keyword search.

Examples of Reactions: Batch vs. Flow

- <u>http://www.princeton.edu/chemistry/macmillan/group-meetings/</u> <u>JEC_microreactors.pdf</u>
- Fletcher, P. D.; et al. *Tetrahedron* **2002**, *58*, 4735-4757.
- ➢ Watts, P.; Wiles, C.; Chem. Commun. 2002, 443-467.
- Hessel, V.; Lowe, H. Chem. Eng. Technol. 2005, 28, 267-284.
- Watts, P.; Hasewell, S. J. Chem Soc. Rev. 2005, 34, 235-246.
- Seeberger, P. H.; et al. *Synlett*, **2009**, *15*, 2382-2391.

Commercial Microfluidics and Flow Systems

\$45,000-130,000

Syrris (Asia System) \$34,000-150,000

Accendo (Conjure) \$100,000-200,000

Chemtrix

ThalesNano (H-Cube)

Fabrication and Feature of Microreactor Materials

Material	Fabrication techniques	Advantages	Disadvantages			
Ceramic	Stereolithography; powder molding; electrodischarge machining; laser machining	Stable at high tmperatures with low heat loss; chemically resistant	High development costs; shrinkage after sintering			
Glass	Photolithography; powder blasting; wet etching, ultrasonic machining	High chemical resistance; direct visualization of reaction	Deep, anisotropic etch is difficult, incompatible with strong aqueous bases at moderate temperature			
Plastic	Soft lithography; injection molding, hot embossing	Fast fabrication; inexpensive development costs	Incompatible with organic solvents; not suitable for high temperature and pressure			
Silicon	Photolithography; wet and dry etching	Operation at high pressure and temperature; superior heat conductivity; high aspect ratio designs	Incompatible with strong aqueous bases at moderate temperture			
Stainless steel	Lithography, electroplating, and molding; stamping; micromachining	Operation at high pressure and temperature	Incompatible with acidic media except for expensive, specialized steels			

Plastic

Silicon

Stainless steel

Annu. Rev. Anal. Chem. 2010, 3, 19-42.

Mixing in Batch vs. Flow

Fluorescent dye in glycerin (20 L reactor, impeller mixing)

<mark>3 s</mark>

3 min

Mixing in a 250 mL cylinder - magnetic stirrer, 500 rpm - 95% mixed, ~ 8 s

Factors effecting batch mixing - reaction size vs. stirrer size - stir rate, type, and shape

Mixing in Batch vs. Flow

Kaskawulsh Glacier Kluane National Park, Canada

Laminar Flow

Turbulent Flow

Meso Flow

Mixing in Batch vs. Flow

Efficiency of mass transport is related to interfacial contact

Greater specific area translates to better mixing

Reactor type	Specific area (m^2m^{-3})
Microreactor (140 ^µ L)	10000
Microreactor (gas-liquid)(50:50)	5000
250 mL Round bottom flask	80
Round bottom flask (half full)	20

Gas-Liquid Segmented Flow

Fluorous-Liquid Segmented Flow

Angew. Chem. Int. Ed., 2003, 42, 767-772.

Angew. Chem. Int. Ed., 2006, 45, 7336-7356.

Ismagilov's Group

Fluorous Phase Properties/Limitations

1	miseronity fuere for fire mixture of fuerous and organic phase							
	Fluorous	Organic	Two Phase at ([°] C)	One Phase at (^o C)				
	$CF_3C_6F_{11}$	CCl ₄	RT	≥ 26.7				
	$CF_3C_6F_{11}$	CHCl ₃	RT	≥ 50.1				
	$CF_3C_6F_{11}$	C_6H_6	RT	≥ 84.9				
	$CF_3C_6F_{11}$	$CH_3C_6H_5$	RT	≥ 88.6				
	$CF_3C_6F_{11}$	CIC_6H_5	RT	≥ 126.7				
	$CF_3C_6F_{11}$	hexane	0	RT				
	$CF_3C_6F_{11}$	pentene	-16	RT				
	$CF_3C_6F_{11}$	ether	0	RT				
	$C_{10}F_{18}$	$CH_3C_6H_5$	RT	64				

Miscibility Table for 1:1 mixture of fluorous and organic phase

Handbook of Fluorous Chemistry, 2004, Gladysz, Curran, and Horvath

Reaction Benefiting from Enhanced Mixing in Flow

Temperature Control in Flow: Material Matters

Ability to run reactions at desired temperature with desired stoiciometry in flow

Batch reaction require portion-wise addition of reagents (not ideal)

Reaction Benefiting from Enhanced Heat Transfer in Flow

Combining Microreactors with Reaction Screening

Combining Microreactors with Reaction Screening

Combining Microreactors with Reaction Screening

Enabled screening of 1296 reactions

> UPLC reaction profiling: *ELS/MS*

J. Org. Chem. 2009, 74, 6169.

Fluorosilane Modification of Silicon Microreactor

Surface treatment of silicon reactor affords reduced dispersion
 Plugs can be inserted closer together: increased throughput

Combining Microreactors with Reaction Optimization

- Fully automated system for rapid identification of optimal reaction conditions
 - Complex and multi-step reactions
 - Minimal use of reagents
- Platform addresses typical process questions:
 - What is the maximum achievable yield?
 - What are the kinetics?

Maximize yield by varying reaction time, reaction temperature, stoichiometry, catalyst loading, ligand amount

Annu. Rev. Anal. Chem. **2010**, 3, 19–42. Org. Process. Res. Dev. **2010**, *14*, 1169-1176.

Combining Microreactors with Reaction Optimization

- Starting: 50 °C, 60 s, 1.0 equiv CrO₃, 8 mM alcohol
- Optimized: 88 °C, 48 s, 0.65 equiv CrO₃, 8.24 mM alcohol

Annu. Rev. Anal. Chem. 2010, 3, 19–42.

Combining Microreactors with Multistep Synthesis Integration of Separation Techniques

Angw. Chem. Int. Ed., 2007, 46, 5704

Combining Microreactors with Multistep Synthesis

Integration of Separation Techniques

Combining Microreactors with Multistep Synthesis

Integration of Separation Techniques

Combining Microreactors with Multistep Synthesis

Integration of Separation Techniques

Combining Microreactors with Multistep Synthesis Integration of Distillation Techniques

Table 1: Residence time (t), CH_2Cl_2 composition, conversion, and yield as a function of distillation temperature.

T [°C]	<i>t</i> [min]	CH ₂ Cl ₂ [vol %]	Conv. \pm s.d. [%] ^[a]	Yield \pm s.d. [%] ^[a]
110	5.1	9.6	47.1±8.7	42.8±5.9
120	5.5	7.1	67.6 ± 4.5	57.5 ± 4.1
125	8.1	6.0	96.3 ± 0.4	76.8 ± 0.7

[a] s.d. = standard deviation for three samples.

- Challenging: surface forces dominate over gravitational forces
- Vaporization of lower boiling solvent in gas-liquid segmentation
 - removed solvent vapors with N₂ gas
- Reduced product minor (15:1)
 - similar to batch

Angew. Chem. Int. Ed., 2010, 49, 899.

Phenol

DIEA

DCM

Combining Microreactors with Highly Energetic Reactions Handling of Energetic Materials

- Continuous flow allows for safer and simpler synthesis
- Silicon reactor dissipates reaction exotherm
- In flow removal of evolved gas

Combining Microreactors with Super Heating Microwave-Type Conditions

metoprolol (19)

20

entry	conditions (psi)	amine (equiv)	temp (°C)	flow rate ^a (µL/min)	time	yield $19^{b,c}$ (%)	yield 21 (%)	conversion (%)
1	batch μw^d (~100)	1.2	150	—	30 min	65	31	100
2	batch μw^e (~100)	1.2	150	—	30 min	69	28	100
3	μ reactor (500) ^f	1.2	240	480	15 s	61	14	76
4	μ reactor (500) ^f	1.2	240	240	30 s	69	21	92
5	μ reactor (500) ^f	1.2	240	120	1 min	72	24	99
6	μ reactor (500) ^f	2.0	240	480	15 s	80	8	89
7	μ reactor (500) ^f	2.0	240	240	30 s	86	12	99
8	μ reactor (500) ^f	4.0	240	480	15 s	91	6	98

21

^{*a*} Combined flow rate of both reagents. ^{*b*} All yields and conversions are calculated on the basis of HPLC analysis with an internal standard. ^{*c*} \sim 1% of the regioisomer can be isolated but was not quantified. ^{*d*} 1 mL in a 5 mL vial. ^{*e*} 2 mL in a 5 mL vial. ^{*f*} Backpressure regulator.

- Comparable to microwave reactions: shorter and cleaner reactions
- Reactions are scalable whereas microwave reactions are not

Org. Proc. Res. Dev. 2010, 14, 432-440.

Combining Microreactors with Solids Limiting Clogging with Acoustics

Teflon and Silicon/glass both experience clogging problems
 Sonication produces smaller particle sizes and reduces/delays clogging

Org. Proc. Res. Dev. 2010, 14, 1347.

Combining Microreactors with Photochemistry

- > Poor UV penetration
- Long diffusion lengths
- Potential degradation of product
- Poor control of temperature
- Difficult to use filters

- Excellent UV penetration
- > Short diffusion lengths
- Reduced chance for degradation
- Good control of temperature
- Easy wavelength filtering
- Integrated UV capillary lamps

Combining Microreactors with Photochemistry

Glass available for making reactors

Fig. 28. UV-transmission of highly UV-transparent technical glass types 8271, 8337B, 8405 and 8688 at 0,5 mm glass thickness

1000 W High Pressure Mercury Lamp

- Excellent UV penetration
- Short diffusion lengths
- Reduced chance for degradation
- Good control of temperature
- Easy wavelength filtering
- Integrated UV capillary lamps

Combining Microreactors with Photochemistry

J. Org. Chem. 2005, 70, 7558.

CMLD BU Micro-photochemistry Platform

Adjustable Iris (blocks incidental light)

Plano Concave Lens (focuses/collimates light)

IR Heat Mirror (blocks IR wavelengths)

Optical Filter (blocks unwanted UV)

<u>Current Filter Section</u> Longpass (50% cutoff): 280, 295, 305, 320, 370 nm Bandpass (30% cutoff): 255-375, 305-365, 330-380, 340-405 nm

Combining Microreactors with Photochemistry Benchmark Photochemical Reactions

K. Pimparkar et al. 2010

Combining Microreactors with Photochemistry Photosensitizer Selection

- Fast ISC to triplet state (φ_{ST} ~1.0)
- Adequate triplet energy (E_T) to allow energy transfer to acceptor
- Long triplet lifetime (τ) to maximize efficiency of energy-transfer
- Substantial absorption in region that acceptor does not
- Low chemical reactivity and can be easily removed
- Ideal concentration of 10⁻³M

Microsoft Excel - sensitizer_table2.xls												
Ele Edit View Insert Format Tools Data Window Help												
🗄 🗋 🧉 🛃 👌 🎒 🗳 🕵 🐇 🐇 🖺 🛍 - 🝼 👘 - 🔍 - 😒 Σ - 2 ↓ 2 ↓ 1 μμ 💀 75% Ο 📄 Times New Ro											New Ron	
AF4 f												
_	L									۷	V	
2			code	280long	295long	305long	320long	370long	U-330	U-340	UG-1	B-370
3		Filters and Lamp	range (nm))					255-375	305-365	330-380	340-405
4		Click here for lamp info.	Click on s	pecific filt	er code to s	ee absoptio	n spectrum.					
5												
6					ezcit	ation				nonpol	ar	
8	entry	sensitizer	solvent	λAbs	s	E _s (kJ/mol)	E _s (koal/mol)	λs ^{s-I} (nm)	E _T (kJ/mol)	E _T (kcal/mol)	τ _τ (μs)	Ø 7
9			DCE	387	21168							
10	1		MeOH			310(n) 306(p)	73.2(p)	387(n) 391(p)	173	41.3		0.48
11		Ńe	ACN	385	6902							
12			DCE	403	26736	295(n) 297(p)				41.8		
13	2		DCE	385	4480			405(n)	175		8700	
14	-		ACN	383	21248			403(p)			0100	
15		\sim	ACN	402	1590							
16		s II	DCE									
17	3	Me. COC Me	MeOH						176	42.1	1.3	1
18		Me Me	ACN									
19			DCE	377	17670							
20	4		MeOH			318(n) 319(p)		376(n) 375(p)	178	42.5	670	0.71
21			ACN	374	4912							
22			DCE	371	205							
23	_		DCE	333	35680	322(n)	70.0(-)	372(n)		105	100	0.07
24	6		ACN	370	218	321(p)	46-9(9)	373(p)			+86	6:37
25		\sim	ACN	333	32928							
26		o 🦳	DCE	385	63							
27	6	6	MeOH			247(n)	59.1(n)	485(n)	223	53.3	150	0.92
28		U Ö	ACN	375	60							
29		0	DCE	440	9							
H -	A → P \ Sheet1 / Sheet2 / Sheet3 / Sheet4 /											
Draw • 🔓 AutoShapes • 🔪 🔪 🖸 🔿 🚰 🐗 🔅 🗕 🖉 🥸 • 🚄 • 📥 • = 🚃 🚓 🗐 🖕												

Summary: Questions before Answers

Understand the benefits of microfluidics and the use of microreactors

- Better mixing
- Better temperature control
- Better control of reaction time
- Contained devise allows handle/use of hazardous material
- Use less material and scaleable optimization

> Understand the reaction in question

- Can microfluidics improve reaction yield/selectivity
- How much material is required
- Do you have a question about reaction kinetics (accuracy?)

Acknowledgments

CMLD-BU:

- > Aaron Beeler
- John Porco

≻ MIT:

- Klavs Jensen
- Jonathan McMullen
- Nikolai Zaborenko
- Hemantkumar Sahoo
- Ketan Pimparkar

