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If I had a Nickel for every time … 

2 

 A silvery-white metal found in nature as a component of 
silicate, sulfide, or arsenide ores. Primarily combined with 
oxygen or sulfur as oxides or sulfides. 

 Abundance in earth crust is about 0.009% (Fe >> Ni > Cu).  
 Used in alloys, electroplating, batteries, coins, industrial 

plumbing, spark plugs, machinery parts, stainless-steel, nickel-
chrome resistance wires, and catalysts.  

 Nickel may not be worth a dime, but 1 mmol is! 

Common Catalyst Precursors 

NiCl2 PdCl2 PtCl2 AuCl3 RhCl3 

USD/1 
mmol 0.1 5.8 32.2 35.6 51.8 

http://www3.epa.gov/airtoxics/hlthef/nickel.html; accessed 02/21/2016. 
Review: V. P. Ananikov: ACS Catal. 2015, 5, 1964. 
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Production of Nickel 
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 Mined in >23 countries and smelted/refined in 25 countries.  
 Primary nickel is produced and used in the form of ferro-nickel 

and nickel oxides. 
 Also readily recycled. Large tonnages of secondary or "scrap" 

nickel are used to supplement newly mined metal. 
 Annual global production is about 1.4 million tons of primary 

nickel (Cu > 10 million tons; steel > 800 million tons). 
 

 

 

http://investingnews.com/daily/resource-investing/base-metals-investing/nickel-investing/10-top-nickel-producing-countries/, accessed 02/22/2016. 
https://www.nickelinstitute.org/, accessed 02/22/2016. 

Country Tons Mined in 2015 

Philippines 440,000 
Russia 260,000 
Indonesia 240,000 
Canada 233,000 
Australia 220,000 

* USA has one mine in Michigan  
  2014, 3,600 tons mined;  
  102,000 tons from recycling scraps. 
 

http://minerals.usgs.gov/, accessed 02/22/216. 
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U.S. Environmental Protection Agency (EPA) 

Hazard Statement for Nickel  

4 

 “Nickel dermatitis, consisting of itching of the fingers, hands, 
and forearms, is the most common effect in humans from 
chronic (long-term) skin contact with nickel.  Respiratory 
effects have also been reported in humans from inhalation 
exposure to nickel ... EPA has classified nickel refinery dust 

and nickel subsulfide as Group A, human carcinogens, 
and nickel carbonyl as a Group B2, probable human 
carcinogen.” 
 

 Group A - Carcinogenic to Humans: Agents with adequate human data to 
demonstrate the causal association of the agent with human cancer. 

 Group B - Probably Carcinogenic to Humans: Agents with sufficient 
evidence from animal bioassay data, but either limited human evidence 
(Group B1), or with little or no human data (Group B2). 

http://www3.epa.gov/airtoxics/hlthef/nickel.html; accessed 02/21/2016. 
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 Occupational: production and processing. Contact: jewelry, 
coins, stainless steel cooking and eating utensils.  
 

 Average in drinking water (USA): 2 - 4.3 ppb. Soil: 4 - 80 ppm.   
 

 An essential nutrient for some mammals, and possibly 
humans. A 70 kg (154 lbs) reference man contains 10 mg of 
nickel (body concentration of 0.1 ppm). 
 

 Food is the major source of exposure. Daily intake: food 
(about 170 µg; high in chocolate, soybeans, nuts, and 
oatmeal); drinking water (2 µg); breathing air (0.1 - 1 µg, 
excluding nickel in tobacco smoke).  

Exposure to Nickel  

. 

http://www3.epa.gov/airtoxics/hlthef/nickel.html; accessed 02/21/2016. 
http://www.atsdr.cdc.gov/toxprofiles/tp15.pdf; accessed 02/21/2016. 
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Basics of Organotransition Metal Reactions 
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Bond 

BDE 

(kcal/mol) 

H3C-CH3 87.4 

L2(X)Ni(II)-CH3 38.0-51.1 

L2(X)Pd(II)-CH3 48.3-55.2 

L2(X)Pt(II)-CH3 60.8-66.5 

Review: V. P. Ananikov: ACS Catal. 2015, 5, 1964. 
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Basics of Organotransition Metal Reactions 

7 
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Basics of Organotransition Metal Reactions 

8 
Review: V. P. Ananikov: ACS Catal. 2015, 5, 1964. 

M ΔE‡ (RE) ΔE (RE) ΔE‡ (OA) ΔE (OA) 

Ni-C 16.8 -4.1 20.9 4.1 

Pd-C 24.9 -19.0 43.9 19.0 

Pt-C 45.8 -3.5 49.3 3.5 

Joe Salamoun @ Wipf Group Page 8 of 40 3/27/2016



Ni vs. Pd 

Nickel Palladium 

-1, 0, +1, +2, +3, +4 0, +1, +2, +3, +4 

Smaller atomic radius Larger atomic radius 

Less electronegative More electronegative 

Harder  Softer 

Facile oxidative addition Facile reductive elimination 

Facile -migratory insertion Facile -hydride elimination 

Radical pathways more accessible 

Less expensive 

Review: T. F. Jamison: Nature 2014, 509, 299. 
9 

Joe Salamoun @ Wipf Group Page 9 of 40 3/27/2016



Ni/Pd Dual Catalysis 

10 
D. J. Weix: Nature 2015, 524, 454. 

Ni Pd 

Ni + Pd 
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Ni/Ni Bimetallic Catalysis 

Alkyl-Alkyl Kumada Coupling 

11 
X. Hu: J. Am. Chem. Soc. 2013, 135, 12004. 
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Arsenal of Oxidation States: 0, I, II, III 

Reductive Cross-Coupling of Electrophiles 

12 

D. J. Weix: J. Am. Chem. Soc. 2010, 132, 920. 

S E. Reisman: J. Am. Chem. Soc. 2013, 135, 7442. 

S. E. Reisman: J. Am. Chem. Soc. 2014, 136, 14365. 

S. E. Reisman: J. Am. Chem. Soc. 2015, 137, 10480. 
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What about Ni(IV)? 

13 M. S. Sanford: Science 2015, 347, 1218;   
                          J. Am. Chem. Soc. 2015, 137, 8034. 
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Photoredox/Ni Dual Catalysis 
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 Publication History (Original Research Articles): 
 2013: 1 
 2014: 2 
 2015: 11 
 2016: 9 (as of 02/22/2016) 

Journal 
# of 

Publications 
Journal 

# of 

Publications 

J. Am. Chem. Soc. 8 Nature 1 
Angew. Chem. Int. Ed. 3 Proc. Natl. Acad. Sci. U.S. A. 1 
Org. Lett. 3 Chem. Sci. 1 
Science 2 J. Org. Chem. 1 
Chem. Eur. J. 2 Org. Chem. Front. 1 
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Basics of a Photoredox Catalyst 

15 
A. Cannizzo: Angew. Chem. Int. Ed. 2006, 45, 3174. 
Review: C. R. J. Stephenson: J. Org. Chem. 2012, 77, 1617. 
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- High activation energy. 
- Rate-limiting step in most Suzuki 

cross–couplings. 
- Requires stoichiometric base, 

and high temperature.  
- Transmetalation rate: 
    Csp > Csp2 > Csp3 

- Low activation energy. 
- Reactivity dictated by 

measurable redox potentials. 
- Requires no base or heat.  
- SET rate:  
    Csp3  > Csp2 > Csp 

G. A. Molander: Science 2014, 345, 433. 

Two-Electron Transmetalation Single-Electron Transmetalation 

Single-Electron Transmetalation in 

Organoboron Cross-Coupling 
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Single-Electron Transmetalation in 

Organoboron Cross-Coupling 

17 
G. A. Molander: Science 2014, 345, 433; J. Am. Chem. Soc. 2015, 137, 2195; Chem. Eur. J. 2016, 22, 120. 
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Mechanistic Considerations 

G.A. Molander and M. C. Kozlowski: J. Am. Chem. Soc. 2015, 137, 4896. 
18 
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Dynamic Kinetic Resolution 

19 
G.A. Molander and M. C. Kozlowski: J. Am. Chem. Soc. 2015, 137, 4896. 

Radical Addition 

Favored 
Reductive Elimination 

Disfavored 
Reductive Elimination 
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Trifluoroborates and Borylated Aryl Bromides 

20 
G.A. Molander: Proc. Natl. Acad. Sci. U.S. A.  2015, 112, 12026. 
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Coupling of α-Carboxyl C(sp3) with Aryl Halides 

D. W. C. MacMillan and A. G. Doyle: Science 2014, 345, 437. 
21 
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The Minor Procedural Details with Major Impact 

M. S. Oderinde, J. W. Johannes: J. Org. Chem.  2015, 80, 7642. 
22 

(Boc-Pro-O)NiCl•dtbbpy 
Observed 
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The Minor Procedural Details with Major Impact 

M. S. Oderinde, J. W. Johannes: J. Org. Chem.  2015, 80, 7642. 
23 

O2 facilitates  
ISC 

light 

source solvent 

reaction 

time % yield 

26 W CFL DMF 20 h 0 

26 W CFL MeCN 20 h 68 

26 W CFL MeCN/DMF 20 h 90 

34 W LED DMF 5 h >95 

* All >95% yield when not degassed. 
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Decarboxylative Arylation of α-Oxo Acids 

24 
D. W. C. MacMillan: Angew. Chem. Int. Ed. 2015, 54, 7929. 
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Coupling of Carboxylic Acid with Vinyl Halides 

25 
D. W. C. MacMillan: J. Am. Chem. Soc. 2015, 137, 624. 
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Enantioselective Arylation of α-Amino-Acids 

G. C. Fu and D. W. C. MacMillan: J. Am. Chem. Soc. 2016, 138, 1832.  
26 
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Alcohols to Ethers 

D. W. C. MacMillan: Nature 2015, 524, 330. 
27 
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Alcohols to Ethers 

D. W. C. MacMillan: Nature 2015, 524, 330. 
28 
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Direct Acylation of C(sp3)-H Bonds 

A. G. Doyle: Angew. Chem. Int. Ed. 2016, DOI:10.1002/anie.201511438. 
29 
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Arylation of α-Aminomethyltrifluoroborates 

G. A. Molander: Angew. Chem. Int. Ed. 2016, 55, 254.  
30 
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Regioselective Indoline Synthesis 

T. F. Jamison: J. Am. Chem. Soc. 2015, 137, 9531. 
31 
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Regioselective Indoline Synthesis Mechanism 

T. F. Jamison: J. Am. Chem. Soc. 2015, 137, 9531. 
32 
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Cross-Coupling Involving Heteroatoms 

33 
G. A. Molander: Org. Lett. 2016, 18, 876. Joe Salamoun @ Wipf Group Page 33 of 40 3/27/2016



Cross-Coupling Involving Heteroatoms 

34 
G. A. Molander: J. Am. Chem. Soc. 2016, 138, 475. G. A. Molander: Org. Lett. 2016, 18, 764. 
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Cross-Coupling Involving Heteroatoms 

M. S. Oderinde, J. W. Johannes: J. Am. Chem. Soc. 2016, 138, 1760. 

35 
L-Q Lu, W-J Xiao: Chem. Eur. J. 2015, 21, 4962. 
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H2 Generation/CO2 reduction to CO 

D. G. Nocera: Chem. Sci. 2015, 6, 917.  
36 

C. J. Chang: J. Am. Chem. Soc. 2013, 135, 14413.  
Joe Salamoun @ Wipf Group Page 36 of 40 3/27/2016



Some Considerations 

37 

 1. Photocatalyst 

 cheaper catalysts needed. 
 scale limitations? (light permeability issues) 

 batch v. flow photoreaction. 
 alternative SET/radical generation conditions 

 redox-active esters 

P.S. Baran: J. Am. Chem. Soc. 2016, 138, 2174. 
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Some Considerations 
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 2. Nickel Catalyst 

 ligand scope? Most examples use the same ligand. 
 more examples of stereo-induction via chiral ligands. Or 

substrate-controlled (difficult when dealing with radicals). 
 in some cases, high catalyst loadings. 
 long reaction times (but most reactions run at RT). 
  

 3. Coupling Partners/Non-Coupling Reagents 

 more examples of intramolecular 
 applications in synthesis of complex molecules. 
 more examples of C-heteroatom coupling (F, B). 
 in many cases, atom economy is poor. 
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Future Outlook 

39 

 This methodology is in its (very) early stages and will expand 
rapidly in the next 5-10 yrs. 2016 is on track for 60 
publications!  

 So far, very nice display of different coupling partners and 
novel mechanisms … but the methodology is not yet 

practical: 
 poor atom economy 
 expensive photocatalyst (can photocatalyst be replaced?) 
 scale limitations 
 not yet demonstrated on complex molecules 

 Lots of room for growth and improvement makes for exciting 
proposal topics! 
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