Shedding Light on Nickel Mechanisms: **Combining Photoredox and Nickel Catalysts**

Joe Salamoun @ Wipf Group

Page 1 of 40

3/27/20

If I had a Nickel for every time ...

- A silvery-white metal found in nature as a component of silicate, sulfide, or arsenide ores. Primarily combined with oxygen or sulfur as oxides or sulfides.
- Abundance in earth crust is about 0.009% (Fe >> Ni > Cu).
- Used in alloys, electroplating, batteries, coins, industrial plumbing, spark plugs, machinery parts, stainless-steel, nickelchrome resistance wires, and catalysts.
- Nickel may not be worth a dime, but 1 mmol is!

	Common Catalyst Precursors				
	NiCl ₂		PtCl ₂	AuCl ₃	RhCl₃
USD/1 mmol	0.1	5.8	32.2	35.6	51.8

http://www3.epa.gov/airtoxics/hlthef/nickel.html; accessed 02/21/2016. Review: **V. P. Ananikov**: *ACS Catal.* **2015**, *5*, 1964.

Page 2 of 40

Production of Nickel

- Mined in >23 countries and smelted/refined in 25 countries.
- Primary nickel is produced and used in the form of ferro-nickel and nickel oxides.
- Also readily recycled. Large tonnages of secondary or "scrap" nickel are used to supplement newly mined metal.
- Annual global production is about 1.4 million tons of primary nickel (Cu > 10 million tons; steel > 800 million tons).

Country	Tons Mined in 2015	
Philippines	440,000	* USA has one mine in Michigan
Russia	260,000	2014, 3,600 tons mined;
Indonesia	240,000	102,000 tons from recycling scraps.
Canada	233,000	http://minerals.usgs.gov/, accessed 02/22/
Australia	220,000	

http://investingnews.com/daily/resource-investing/base-metals-investing/nickel-investing/10-top-nickel-producing-countries/, accessed 02/22/2016. https://www.nickelinstitute.org/, accessed 02/22/2016.

U.S. Environmental Protection Agency (EPA) Hazard Statement for Nickel

- "Nickel dermatitis, consisting of itching of the fingers, hands, and forearms, is the most common effect in humans from chronic (long-term) skin contact with nickel. Respiratory effects have also been reported in humans from inhalation exposure to nickel ... EPA has classified nickel refinery dust and nickel subsulfide as Group A, human carcinogens, and nickel carbonyl as a Group B2, probable human carcinogen."
- Group A Carcinogenic to Humans: Agents with adequate human data to demonstrate the causal association of the agent with human cancer.
- Group B Probably Carcinogenic to Humans: Agents with sufficient evidence from animal bioassay data, but either limited human evidence (Group B1), or with little or no human data (Group B2).

Δ

Exposure to Nickel

- Occupational: production and processing. Contact: jewelry, coins, stainless steel cooking and eating utensils.
- Average in drinking water (USA): 2 4.3 ppb. Soil: 4 80 ppm.
- An essential nutrient for some mammals, and possibly humans. A 70 kg (154 lbs) reference man contains 10 mg of nickel (body concentration of 0.1 ppm).
- Food is the major source of exposure. Daily intake: food (about 170 μg; high in chocolate, soybeans, nuts, and oatmeal); drinking water (2 μg); breathing air (0.1 - 1 μg, excluding nickel in tobacco smoke).

Basics of Organotransition Metal Reactions

Basics of Organotransition Metal Reactions

Μ	ΔE‡(RE)	ΔE (RE)	ΔE [‡] (OA)	ΔΕ (ΟΑ)
Ni-C	16.8	-4.1	20.9	4.1
Pd-C	24.9	-19.0	43.9	19.0
Pt-C	45.8	-3.5	49.3	3.5

Ni vs. Pd

Nickel	Palladium
-1, 0 , +1 , +2 , +3 , + 4	0 , +1, +2 , +3, +4
Smaller atomic radius	Larger atomic radius
Less electronegative	More electronegative
Harder	Softer
Facile oxidative addition	Facile reductive elimination
Facile β -migratory insertion	Facile β -hydride elimination
Radical pathways more accessible	
Less expensive	

Ni/Pd Dual Catalysis

Ni/Ni Bimetallic Catalysis Alkyl-Alkyl Kumada Coupling

Photoredox/Ni Dual Catalysis

- **Publication History** (Original Research Articles):
 - **2013:** 1
 - **2014:** 2
 - **2015:** 11
 - 2016: 9 (as of 02/22/2016)

Journal	# of Publications	Journal	# of Publications
J. Am. Chem. Soc.	8	Nature	1
Angew. Chem. Int. Ed.	3	Proc. Natl. Acad. Sci. U.S. A.	1
Org. Lett.	3	Chem. Sci.	1
Science	2	J. Org. Chem.	1
Chem. Eur. J.	2	Org. Chem. Front.	1

Basics of a Photoredox Catalyst

Single-Electron Transmetalation in Organoboron Cross-Coupling

- High activation energy.
- Rate-limiting step in most Suzuki cross–couplings.
- Requires stoichiometric base, and high temperature.
- Transmetalation rate:
 - $\rm C_{sp} > C_{sp2} > C_{sp3}$

Single-Electron Transmetalation

- Low activation energy.
- Reactivity dictated by measurable redox potentials.
- Requires no base or heat.
- SET rate:

Single-Electron Transmetalation in **Organoboron Cross-Coupling**

Joe Salamoun @ Wipf Group

17

Page 17 of 40

3/27/2016

Trifluoroborates and Borylated Aryl Bromides

Coupling of α-Carboxyl C(sp³) with Aryl Halides

The Minor Procedural Details with Major Impact

The Minor Procedural Details with Major Impact

Decarboxylative Arylation of α-Oxo Acids

24

D. W. C. MacMillan: Angew. Chem. Int. Ed. 2015, 54, 7929. 3/27/2016

Coupling of Carboxylic Acid with Vinyl Halides

Enantioselective Arylation of α-Amino-Acids

26

3/27/2016

Alcohols to Ethers

Arylation of α-Aminomethyltrifluoroborates

Regioselective Indoline Synthesis

31

Page 31 of 40

Regioselective Indoline Synthesis Mechanism

H₂ Generation/CO₂ reduction to CO

Joe Salamoun @ Wipf Group

Page 36 of 40

C. J. Chang: J. Am. Chem. Soc. 2013, 135, 14413.

Some Considerations

• 1. Photocatalyst

- cheaper catalysts needed.
- scale limitations? (light permeability issues)
 - batch v. flow photoreaction.
- alternative SET/radical generation conditions
 - redox-active esters

Some Considerations

• 2. Nickel Catalyst

- ligand scope? Most examples use the same ligand.
- more examples of stereo-induction via chiral ligands. Or substrate-controlled (difficult when dealing with radicals).
- in some cases, high catalyst loadings.
- long reaction times (but most reactions run at RT).

• 3. Coupling Partners/Non-Coupling Reagents

- more examples of intramolecular
- applications in synthesis of complex molecules.
- more examples of C-heteroatom coupling (F, B).
- in many cases, atom economy is poor.

Future Outlook

- This methodology is in its (very) early stages and will expand rapidly in the next 5-10 yrs. 2016 is on track for 60 publications!
- So far, very nice display of different coupling partners and novel mechanisms ... but the methodology is not yet practical:
 - poor atom economy
 - expensive photocatalyst (can photocatalyst be replaced?)
 - scale limitations
 - not yet demonstrated on complex molecules
- Lots of room for growth and improvement makes for exciting proposal topics!

Acknowledgments

- Prof. Peter Wipf
- Wipf Group Past and Present
- Caffeine

