

Transition Metal-Catalyzed Functionalization of C_{sp3} via C-H bond activation

Presented by: Jared T. Hammill Wipf Group Meeting University of Pittsburgh September 22, 2012

Outline

A. Introduction

- B. C_{sp3} C-H Bond Functionalization
 - A. C-O Bond Formation
 - B. C-N Bond Formation
 - C. C-C Bond Formation
 - D. C-X Bond Formation
- C. Conclusions and Future Directions

What is Transition Metal-Catalyzed C-H activation?

Definition:

The use of transition metals to increase the reactivity of a C-H bond by replacement of the strong C-H bond with a more readily functionalized C-[M] bond.

Chem. Rev. 1997, 97, 2879-2932

Jared Hammill @ Wipf Group

Advantages of C-H activation

Only requires prefunctionalization of one precursor

Science, 2006, 312, 67-72

Advantages of C-H activation

Transition Metal Cataysis:

Changing Metal we can get reactivity at 1°, 2°, and 3° C-H bonds

While many transition metals have been used today I will focus on Pt, Pd, Fe, Rh, Ru

Challenges of C-H activation

"Inertness" of alkanes

Formerly known as "paraffins", derived from the latin *parum affinis* (without affinity), products more reactive than SM

Ubiquitous nature of C-H bonds

Selectivity challenging: little difference in reactivity between C-H bonds

pKa's were reproduced from http://evans.harvard.edu/pdf/evans_pka_table.pdf BDE's were reproduced based on http://www.q1.fcen.uba.ar/materias/qi1/Tablas/disocia.pdf

Jared Hammill @ Wipf Group

Chem. Rev. **1997**, 97, 2879-2932 6

Background C-H Insertion

Outline

A. Introduction
B. C_{sp3} C-H Bond Functionalization
A. C-O Bond Formation
B. C-C Bond Formation
C. C-N Bond Formation
D. C-X Bond Formation

C. Conclusions and Future Directions

Shilov Chemistry

$$CH_4 \xrightarrow{[M]} H_3C \xrightarrow{[M]} \xrightarrow{FG} H_3C \xrightarrow{FG}$$

Functionalization of Methane

- Methane = main constituent of natural gas
- Need way to functionalize for transport (gas \rightarrow liquid)
- Need to use for synthesis of fine chemicals

Shilov chemistry

$$CH_4 \xrightarrow{Pt^{II} (cat.)} CH_3OH$$

$$Pt^{IV} (stoich)$$

- Methanol = industrial SM for plastics and paints
- Poor efficiency

Nature, **2007**, *446*, 391-594 *New J. Chem.* **1983**, *7*, 729

Jared Hammill @ Wipf Group

Shilov Chemistry

Mechanism:

Key observation:

Stoichiometric amount of Pt (needed for oxidation)

Jared Hammill @ Wipf Group

Current State of the Art

Jared Hammill @ Wipf Group

White's Pd^{II} Allylic C-H Activation

Jared Hammill @ Wipf Group

J. Am. Chem. Soc. **2006**, 128, 15076 ¹²

Mechanism of Allylic C-H Activation

Electrophillic Pd^{II}/Pd⁰ Catalysis

Complex Product Allylic C-H

Nat. Chem., 2009, 1, 547

6-Deoxyerthronolide B

Jared Hammill @ Wipf Group

Nat. Chem., **2009**, *1*, 547

Oxazoline Directed C-H activation

Direct the Palladium where to go:

Jared Hammill @ Wipf Group

Angew. Chem. Int. Ed. **2005**, 44, 7420

Sanford's Oxime

Jared Hammill @ Wipf Group

J. Am. Chem. Soc. **2004**, *126*, 9542 ¹⁷

Directed C-H activation

White's Fe C-H activation

Science, **2007**, 318, 783 Science, **2010**, 327, 566 Nat. Chem., **2011**, 3, 216 Science, **2012**, 335, 807 J. Am. Chem. Soc. **2012**, 143, 9721¹⁹

Jared Hammill @ Wipf Group

White's Fe C-H activation

Jared Hammill @ Wipf Group

Predictable selectivity

General reactivity trends mirror BDE:

Want: electron rich, 3° C-H bonds

Does it work?

Jared Hammill @ Wipf Group

Science, **2007**, 318, 783 ²¹

Predictable selectivity

General reactivity trends mirror BDE:

Want: electron rich, 3° C-H bonds

Does it work:

Jared Hammill @ Wipf Group

Science, **2007**, 318, 783 ²²

Jared Hammill @ Wipf Group

Science, **2010**, 327, 566 ²³

DFT calculation \rightarrow 3° C-H bonds equal electronically Selectivity comes from sterics

Jared Hammill @ Wipf Group

Science, **2010**, 327, 566 ²⁶

Science, **2010**, 327, 566 ²⁷

Page 27 of 73

Overriding inherent selectivity

General selectivity: E⁻rich, sterically accessible, 3° C-H bonds

Can we direct C-H oxidation to less reactive groups?

Jared Hammill @ Wipf Group

J. Am. Chem. Soc. **2012**, *143*, 9721-9726 ²⁸

Yes we can!

Jared Hammill @ Wipf Group

J. Am. Chem. Soc. **2012**, *134*, 9721-9726 ²⁹

Yes we can!

Jared Hammill @ Wipf Group

J. Am. Chem. Soc. **2012**, *134*, 9721-9726 ³⁰

Page 30 of 73

Hartwig's Ir Catalysis

Jared Hammill @ Wipf Group

Scope

Scope

Nature, **2012**, *483*, 70 ³³

C-H oxygentaion Summary

Outline

A. Introduction

- B. C_{sp3} C-H Bond Functionalization
 - A. C-O Bond Formation
 - B. C-N Bond Formation
 - C. C-C Bond Formation
 - D. C-X Bond Formation
- C. Conclusions and Future Directions

C-N Bond formation

- 1) Need to preoxidize C-H bond for either displacement or reductive exchange
- 2) Reliance on protection/deprotection to mask polar/acidic nature of nitrogens

Breslow 1968:

Jared Hammill @ Wipf Group

Top Curr. Chem. 2010, 292, 347 36
Du Bois's Rh Nitrenoid

Du Bois's Rh Nitrenoid

2° C-H Bond selectivity derived from chair-like TS:

J. Am. Chem. Soc. 2001, 123, 6935

38

Jared Hammill @ Wipf Group

Rh Nitrenoid

From Allylic Substrates:

Jared Hammill @ Wipf Group

J. Am. Chem. Soc. **2005**, *127*, 14199 ³⁹

Du Bois's allylic solution

Jared Hammill @ Wipf Group

Ru Nitrenoid a radical approach

Stepwise biradical formation and recombination:

Jared Hammill @ Wipf Group J. Am. Chem. Soc. 2011, 133, 17207

41

Page 41 of 73

White's Fe Catalysis

Yields superior to $Rh_2(OAc)_4$ and No aziridination observed

J. Am. Chem. Soc. 2012, 134, 2036

42

Jared Hammill @ Wipf Group

Fe Catalyst Scope

Jared Hammill @ Wipf Group

J. Am. Chem. Soc. **2012,** *134,* 2036 ⁴³

Intermolecular Rh Nitrenoid

Org. Lett. 2007, 9, 639

Cu Catalysis C-N Bond formation

Jared Hammill @ Wipf Group

Cu Nitrenoid

Cu(CF₃SO₃)₂

Nitrene Formation

Phl

 $TsN=Cu(CF_3SO_3)_2$

Ts _____N=Cu(CF₃SO₃)₂

Concerted C-H Insertion

Jared Hammill @ Wipf Group

NHTs

Org. Lett., **2007**, 9, 2277

Jared Hammill @ Wipf Group

Baran's Cu Catalysis "Ritter-Type"

J. Am. Chem. Soc., 2012, 134, 2547

Jared Hammill @ Wipf Group

Baran's Cu Catalysis "Ritter-Type"

Scope:

Jared Hammill @ Wipf Group

Page 48 of 73

Che's Directed Pd Catalysis

White's Pd Catalyst

Jared Hammill @ Wipf Group

J. Am. Chem. Soc. **2009,** 131, 11701 ⁵⁰

Allylic C-H Mechanism

Electrophillic Pd^{II}/Pd⁰ Catalysis

Jared Hammill @ Wipf Group

J. Am. Chem. Soc. 2009, 131, 11701

C-H Amination Summary

Jared Hammill @ Wipf Group

Outline

A. Introduction

- B. C_{sp3} C-H Bond Functionalization
 - A. C-O Bond Formation
 - B. C-N Bond Formation
 - C. C-C Bond Formation
 - D. C-X Bond Formation
- C. Conclusions and Future Directions

Davies' s Carbenoid Approach

Jared Hammill @ Wipf Group

J. Am. Chem. Soc. 2000, 122, 3063 54

C-H carbon bond formation

C-H carbon bond formation

Jared Hammill @ Wipf Group

White's C-H C-C formation

Jared Hammill @ Wipf Group

J. Am. Chem. Soc. **2008**, 130, 14090 ⁵⁷

Yu's C-H C-C formation

Yu's C-H C-C formation

J. Am. Chem. Soc. 2010, 132, 3680

Jared Hammill @ Wipf Group

Sanford's C-H C-C formation

J. Am. Chem. Soc. 2011, 133, 6541

Jared Hammill @ Wipf Group

Sanford's C-H C-C formation

Yu's C-H C-C formation

Jared Hammill @ Wipf Group

J. Am. Chem. Soc. **2007**, 129, 3510 ⁶²

Page 62 of 73

Halogen Directed C-H C-C Formation

Jared Hammill @ Wipf Group

Fagnou's C-H C-C formation

62%

71%

Jared Hammill @ Wipf Group

J. Am. Chem. Soc. 2010, 132, 10692 64

C-H C-C formation

Jared Hammill @ Wipf Group

J. Am. Chem. Soc. 2010, 132, 10692

Buchwald's C-H C-C formation

C-H C-C formation

C-C bond formation summary

Outline

A. Introduction

- B. C_{sp3} C-H Bond Functionalization
 - A. C-O Bond Formation
 - B. C-N Bond Formation
 - C. C-C Bond Formation
 - D. C-X Bond Formation
- C. Conclusions and Future Directions

Yu's C-H C-I formation

Angew. Chem. Int. Ed. 2005, 44, 2112

Jared Hammill @ Wipf Group

Summary

Conclusion and Future Directions

Hot Topic

>600 journal articles (not reviews) published since 2000

•Ground work has been laid

Continued mechanistic elucidation → rational catalyst design
New catalysts/ligands
Higher levels of predictable selectivity

•Implementation in complex molecule synthesis

"If we can find ways to use C-H bonds as versatile functional groups we can revolutionize the rules that have influenced our strategies for assembling molecules over the last 100 years."

Jared Hammill @ Wipf Group

Chem. Soc. Rev. **2011**, *40*, 1885 72
Transition Metal-Catalyzed Functionalization of C_{sp3} C-H bond activation

Thanks for your attention!

Questions?

Jared Hammill @ Wipf Group

73