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Asymmetric Organocatalyst
and Polymer-supported Organocatalyst

In 1971, Eder, Sauer and Wiechert demonstrated that asymmetry could be induced
in a Robinson-type annulation unsing a meso-triketone by simply adding a catalytic
amount of D- or L-proline.

Eder, U; Sauer, G.; Wiechert, R. ACIEE. 1971, 10, 496-497.
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Cinchoninium-based Catalysts and Asymmetlric Phase Transfer
Catalysis (PTC)

+ |n 1984 at Merck, substituted 2-phenyl-1-indanone was enantioselectively alklyalted in
the presence of catalytic amounts of substituted N-benzylcinchoninium halides under
PTC conditions (560%NaOH/toluene).

Dolling, U. H.; Davis, P.; Grabowski, E. J. JACS, 1984, 106, 446.
c o

Cl o
OO e O
RO CH;ClI RO

(50% NaOH/toluene)

95 %, 92 %ee

pi-stacking H & extended
interactions " ion pairing

Y
RO hhl >

Gil @ Wipf Group 2 12/06/03




Contents and reference.

1. introduction
2. Examples of asymmetric organocatalysis.
3. Polymer-supported organocatalysts.

Review.

1. Enationselective Organocatalysis; Dalko, P. |.; Moisan, L. Angew. Chem.
Int. Ed. Engl. 2001, 40, 3726.

2. Polymer-Supported Organic Catalysits; Benaglia, M.; Puglisi, A.; Cozzi, F.
Chem. Rev. 2003, 103, 3401.

3. Amino acids and peptides as asymmetric organocatalysts; Jarvo, E. R;;
Miller, S. J. Tetrahedron, 2002, 58, 2481.

4. Proline-catalyzed asymmetric reactions; List, B. Tetrahedron, 2002, 58,
5573.

Gil @ Wipf Group 3 12/06/03



Asymmetric organometalcatalysis, Enzyme and Organocatalysis.

+ Organocatalysis display characteristic and mechanistic similarities to known
bioorganic catalysis and are often referred to as enzyme mimics.
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 Enzymes are more than highly evolved catalysts, but organic molecules promote
the reactions as simple reagents, which possess a wider substrate scope and can
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be used in a variety of organic solvents.
« Many organocatalysts are ligands in organometal chemistry.

» Complement each other.
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What and why organocatalysis ?

Asymmetric organocatalysis, in which a chiral organic (metal free) molecules
catalyze an enantioselective transformation, such as phase transfer catalysis, kinetic
resolutions and a variety of asymmetric syntheses in substoichiometric quantity.

Advantage under metal-free condition; the possibility of
I. working in wet solvents and under an aerobic atmosphere.
ii. simpler preparation, more stable, less expensive
iii. avoid the contamination of the organic product by a (possibly toxic)
metal and the toxic waste. (often more environmentally friendly)
iv. more readily amenable to anchor on a support for recovery and recycling.
v. promising adaptability to high-throughput screening and process chemistry.
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What type of Catalyst ?

* 1. derived from Natural products and derivatives;
cinchono alkaloid, proline, ephedrine,
amino acids...
readily available, inexpensive and easily
derivatized.
already studied as ligand in organometal
chemistry.
in some cases, enantiomeric counterpart is
available.

0
;—Bu S
« 2. peptide — Dimer, oligomer, polymer HN\(\”J\ﬁ /j: Q)\ﬁio

peptide-like enzyme mimic. o N BocHN\)%O/H N
easy preparation. HO 2

opposite enantiomer or epimer are available. NL N
combinatorial chemistry. t-Bu R =N

Gil @ Wipf Group 6 12/06/03



3. synthetic molecules with N, P, O, S

phosphoramides, phosphanes, urea, thiourea, N-oxide, sulfoxides, heterocycles.

both enantiomers are readily available than natural molecules.
most originate from ligand chemistry.
diverse functionality.

oo %

o

O NEt,
| = Ph/,, N/\//O
Pr K 7 /[ EAN
\
Phosphoramides

1 CO
Py PPh,
h
@ P PPh;

Phosphanes

Gil @ Wipf Group 7

H
C(\N’R"
/
N-p-R,
0

Ao
H ‘Ph

12/06/03



Allylation reactions.

OH
0 ' PINDOX
SIC|3 -

Ph

78 %, 90 %ee

Malkov, A. et al. Org. Lett. 2002, 4, 1047.

e .NHBz
N /é\p-tolyl HN

.NHBz

| A~SiCls = AL 3%, 90 %ee
ph/\) v CH,Cl,, -78°C,1h  Ph = R

Kobayashi, S. et al. J. Am. Chem. Soc. 2003, 125, 6610.

» Chiral Lewis bases such as phosphoramide, formamide, urea, oxazolidine, and amine
N-oxide, have been used in enantioselective allylation.

« Formation of a tightly bound chiral complex between catalyst and silicon compound. In
TS, octahedral hexacoordinated silicon center was formed.

« Tethered bis-phosphoramide results in better ee than monomer.
« The best ee (92 %ee, 10 mol% cat) with bisquinoline N,N’-dioxide.

« Mono oxide gave the opposite enatiomer of product.

» Still 3 eq. chiral sulfoxide was used with N-acylhydrazone..
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Aldol reactions and Mannich reactions.

.\\H
o O 20 mol% (S)-proline O OH N O
+ DMSO, rt - o-- pete)
/u\/R H - - /%L
R ' | H
R=H, OH 60% yield R R
20:1 dr, 99%ee anti

List, B. et al. J. Am. Chem. Soc. 2000, 122, 7386.

OMe o PMP MeO ) @—&
0O 35 mol% (S)-proline = '\,‘, o
R H™ "R 3 :
R H/J\;R‘
R=H, OH NH, 35 - 90% yield
70 - 96%ee

List, B. et al. J. Am. Chem. Soc. 2002, 124, 827.

R
syn

» [Aldol] Aromatic aldehydes give moderate yield (60 — 70 %) and ee (~ 70 %ee).
1 a-unbranched, enolizable aldehydes suffer lower yield due to selfaldolization.

« In R = OH, anti 1,2-diol like dihydroxylation.

+ absence of non linear effect.

« [mannich] One pot Mannich reaction
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Michael addmons No,  L-proline
2 (3 mol%) @
A @ L

i1 02N
0 0,
CHCI3 71 %, 87 %ee

Ph

Oz L-proline Q -
J/ (15 mol%) _ NO;
X EWG DMSO, rt '

2-24 h 94 %

_ _ _ _ dr >20:1, 23 %ee _
+ Proline-catalysis proceed by both aminocatalysis pathways, iminium (a) and enamine

catalysis (b).

» Urea and thiourea derivatives act as acid catalysts.
« activated by acidic hydrogen of thiourea.

« For a high yield and selectivity, catalyst should possess both thiourea and t-amino
group within molecule.

\Q EtO,C._CO,Et
NOz (10 mol%) NO;

3 -

EtO,C COzEt toluene, rt, 24 h
(2 eq)
Okino, T. et al. J. Am. Chem. Soc. 2003, 125, 12672.
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Cycloaddition reactions.

o, /
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QLK — 0 N/ —_
Ph  H HCI
0 (10 mol%) r?; pd @ b
B | Ph | - £ Ry
MeOH/H,O |
Ph 23 °C | 9% R»

- Ph = exo.endo=1:1.3, 93%ee

MacMillan, D. W. C. et al. J. Am. Chem. Soc. 2000, 122, 4243.

O
N
/K Harmata, M. et al. J. Am. Chem. Soc. 2003, 125, 2058.
N t-Bu e
T™
OTMS  Ph 50 H oioe) )Ol“ﬁ\/NR ) OTMS S~eHO
=~ “CHO > N 2 MNRQ —_—
TFA, CH,Cl, ) )
-78°C, 36 h
only endo
\oY/ 64 %, 89 %ee

» By lowering LUMO of dienophile.
« the characteristics of Lewis acid catalysis.

» The presence of water results in increased rate and enantioselectivity, which indicates
that the iminium ion is hydrolyzed in the catalytic cycle.

« [4+3] 2,5-disubstituted furans gave good yield and ee.
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Cycloaddition reactions.

Ph.
R R
H CO,E R\Lb/ _ _
N - Y TCOoEt « . P Cosk
H H PhH, 1t * PRy * PRy
R=Me, iPr
EWG EWG
EWG
+ e +
+ ' 75-88 %
R3P Et
R:P  CO,Et 3 Cco, COLEL

major (69-93 %ee)

ZEWG

EWG

CO,Et

minor

Zhu, G. et al. J. Am. Chem. Soc. 1997, 119, 3836.

Activated alkenes undergo a formal asymmetric [3+2] cycloaddition in the presence of
allenic esters and a catalytic chiral phosphine.

Phosphine act as a nucleophile trigger.
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Hydrocyanation reactions. @\"I B
In 1981, Inoue reported the (2 mor) . :S}((;N
enantioselective hydrocyanation by Ph™ H  HCON(2eq) toluene, -20°C 70 00,
diketopiperazine, cyclo(L-phenylalanine-L- Ph
histidine). - on T7=0 _
broad substrate scope (electro rich N SR H ooy
aromatic aldehyde is best) and low = N%
loading. . }NH
High-throughput screening of resin- Y

supported oligopeptide-like catalyst. -
Inoue, S. et al. Chem. Commun. 1981, 229.

@CD—@

Ph

the replacement of imidazole with a more ! I
basic guanidine side chain provide better NP (10 ol HN" Ph
ee. PhJ HCN, toluene, 40°C, 20 h Ph)\ngN
the synthesis of unnatural a-amino acids. 96%, 86%ee
by formation of a guanidium cyanide B

complex, which activates the aldimine *___N H

substrate by H-bonding.

\\\ I

Corey, E. J. et al. Org. Lett. 1999, 1, 157.
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Baylis-Hillman reaction.

ru\o CF4 o)
l CF,

o

OH O )C\F3
RCHO

(91-99 %ee)

Iwabuchi, Y. et al. J. Am. Chem. Soc. 1999, 121, 10219.

« hydroxylated chiral amine.

« by formation of betaine intermediate, which is stabilized by intramolecular H-bonding
between oxy anion and phenolic hydroxy group.

« without phenolic OH, very low ee (10 %ee).

+ Phosphorous-based chiral molecule work efficiently.
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Acyl transfer reaction-Kinetic resolution.
OH OAc

‘ 2.5 mol% cat. O
Ac-0, toluene |
-65°C

Z i-Pr 0 a 8”0
BocHN \)J\N/\[(N\)LN’}]/ \/U\NHPr
@) /\Ot~Bu x\ i-Pr /ﬁ
N

N -Nirt Miller, S. J. et al. J. Am. Chem. Soc. 2001
» Linear peptides were considered unsuitable for catalysis due to flexibility and variable
conformation.

- But by the well defined secondary structure of linear peptides (B-turn conforamation,
decreasing catalyst flexibility), they show proper property as catalysts.

« substrate ; participate in H-bonds with catalyst.

» This oligopeptide was discovered by screening a split-pool library of polypeptides for
acylation of sec-phenyethanol.

» In this group, tripeptide containing histidine showed asymmetry addition of azides to
o,p-unsaturated corbonyl compound. (high yield, up to 92 %ee)
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Oxidation.

PN 9
Ph™ 77 "Ph aq. H,0,, NaOH Ph)J\p\Ph

toluene, rt, 24 h 95 %. 96 %ee ’
Julia, S. et al. Angew. Chem. int. Ed. Engl. 1980, 19, 928.
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triphasic mixture.

In MeOH, selectivity and yield drop, due
to interruption of H-bonding.

a-helical peptide more succesful (poly-L-
leucine).

about 30 amino acids show the most
enentioselectivity.

using urea-H,0, and DBU, now two-phase
and no more excess oxidant.

as low as 2.5 mol% cat.

chiral ketones form dioxiranes in situ with
oxidents to give epoxide; up to 87 %ee.

molecular oxygen as co-oxidant; N-oxyl
radical by one-electron oxidation;
oxidation at benzylic positions (8%ee)
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Brr HO Ph :

I N
N Ecph2 Br
Corey's modified cinchonium catalysts.

In 1990’s. Corey demonstrated the utility of modified catalyst in alkyation, Michael addition,
aldol, nitroaldol and epoxidation; in cinchona-catalysts, the substitution pattern (like bulker
group on quaternary ammonium) plays a crucial role (high ee).

mechanism: a unique ion-pair-mediated reaction by chiral quaternary ammonium salts,
based on X-ray structure. and van der Waals interaction between aromatic rings.

Non polar solvents gave higher ee.

Oligopeptides are also used.
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Chiral-cavity-accelerated asymmetric transformation

O HI
[3,3], 5°C YS ¥
RS

.

Takahashi, K. Chem. Rev. 1998, 98, 2013.

[3,3]-Sigmatropic rearrangement of allylic xanthane in B-CD complex.
80 % yield, up to 46 %ee.

The selective recognition of substrates followed by chemical transformation with the
help of a molecular cavity based on chiral host-guest chemistry.

Cyclodextrins form complex with hydrophobic guest based on size, structure and
polarity.

The formed host-guest complex is often too stable to allow catalytic turnover.

Imprinted Polymers with memory for small molecules, proteins or crystals.
Sellergren, B. Angew. Chem. Int. Ed. Engl. 2000, 39, 1031.
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Polymer-supported Organic catalysts
Benagiia, M.; Puglisi, A.; Cozzi, F. Chem. Rev. 2003, 103, 3401.

solid-support @ @

soluble space
insoluble

cross-linking

swelling

additinal steric and electric factor

particle size

recovery

stirring rate - microwave
solvent effect
Temperature

Recovery and Recycling without the loss of reactivity of catalysts.
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1. Phase-Transfer Catalysts anchored to insoluble supports.

* Triphase catalysis

* Polystyrene or polyacryamide-supported catalysts; easy recovery.
« Diffusion of reagent and substrate in and out of polymer matrix.
*  Generally, reaction rates were faster with the higher stirring, relatively low cross-

linking and good swelling.

*  The catalytic activity of polymer-supported catalyst was usually lower than
nonsuppored catalyst; the insertion of spacer can enhance the activity.

Gil @ Wipf Group
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2. Catalysts anchored to soluble supports.

More homogeneous condition.

no more diffusion.

now the issue is recovery and recycling and loading.

Polyethylene-supported catalysts.

i) temperature-dependent solubility. Bergbreiter, D. E. Chem. Rev. 2002, 102, 3345,
ii) the intrinsic thermal instability like phosphonium salts.

NaCN, NaBr cat.
gg?N j RCN _L, RCN
toluene 110°G | toluene coolin toluene
& 5% ol cat filtration | 0.5%mol cat ﬁltratigm

Poly(ethylene glycol)-supported catalysts.

i) inexpensive, easily functionalized

ii) solubility as phase separation device; simply by decreasing the solvent polarity, to
precipitate, recover and recycle.

iii) high Mw of PEG is essential for efficient recovery and recycling. But 55 g catalyst is
required for 1 mol of substrate. (1 mol% cat. with Mw of 5500 Da)

iv) for high loading; dendrimeric catalyst.

BrBus'N N*Bu;Br
bo—@—o«C{
"BrBus*N N*Bu,Br
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3. Polymer-supported Oxidation catalysts

CO.H

silica

O O |
F- (

H
AsOH o O—/\’N{N—o

Arsonic Acids Ketones F TEMPO

* 1) In 1979, PS-arsonic acid was used in Bayer-Villiger oxidation of ketones and
epoxidation of alkenes. (3 mol% cat.)

» three times slower than unsupported arsonic acid.

* readily recoverable and recyclable.

» 2) Silica-supported polymer gave a good property.
high yield, readily recovered, 9 times recycled
non-supported fluoro ketone is rapidly degraded under reaction condition.

» 3) Silica supported TEMPO was recycled 45 times.

* 0.6 mol% cat. yields 99% yield for 1h in oxidation of primary and secodary alcohol.
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4. Acidic catalysts.

n W R; L RXO
_ | ﬂ\‘\ O RO ROH ROAc
S
T R=OH OR; SR,
t Cl
H o PNIPAM R = NHCMe,CH,SO;H R_< _— R%
OR1 O

* In protection and deprotection reactions, pyridinium salts, poly(\N-
isopropylacrylamide)(PNIPAM), dicyanoketene acetals, phosphonium salts polymer
are reported.

» PNIPAM as a ‘'smart polymer’, which is soluble in cold water and insoluble in the
same solvent when heated above its lower critical solution temperature.
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4. Acidic catalysts.

Ph”" Ph p
Clo,

* In C-C bond-forming reactions, trityl perchlorate, dicyanoketene acetals and
tetrafluoropnenylbis(trifluoromethanesulfonyl)metnane polymers were reported.

« 0.1 mol% - 1 mol% catalyst promoted acetylation of menthol with acetic anhydride
(1h, rt, 100 %).

» 10 cycles without loss of activity.
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5. Basic catalysts.

I
N _N
n
Wjjp D R= U\J
HN"SOHN"S0 O N

NHPr-i

n
t
(CHz)s (CHo)s O O O /\
A }\©\ —N_ NH
R Ci

(\N 0 0

)p
\N—E-“‘“
|5 O
NMe, N2

« Since 1979, DMAP-like molecules supported on polymer have been reported.

« with 5 mol% cat., acetylation was catalyzed efficiently and with 0.25 mol%, the
reaction between phenols and di-f-butoxycarbonate was catalyzed.

=

z
\
=

« Catalyst, soluble in polar solvent and water, was recovered by precipitation with
hexanes and the residue of cat. was determined by UV-vis spectroscopy, which

showed less than 0.1 % of cat. was remained. Berbreiter, D. E.; Osburn, P. L. Org.
Lett. 2002, 4, 737.
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6. Chiral polymer-supported catalysts.

» chiral Phase-Transfer catalysts.

» different sites for polymer attachment.

» The use of spacer improved ee of (R)-product slightly.

« Catalyst recovery and recycling were reported.

= Soluble catalyst gave lower ee.

 Just the presence of Me-PEG depressed to 66 %ee with nonsupported catalyst.

/ZJ

- \ Rl

Cl OH /s Ph '

Ph 2NN RX Ph

O“/W\J\/ " K >=/\002R - >—"/‘\COZR
OH ~ PH PH

Ephedrine (1977) N ' 10 mol% Cat. 67 % yield
low but definite stereoselectivity \ 94 %ee (S), 23 %ee (R)
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6. Chiral polymer-supported catalysts.

Qo
(CHp)s 0
T

0
OH N (8S,9R) 87 %ee
N' N (8R,9S) 39 %ee
H
o 62 %, cisftrans=93.7
trans (90 %ee)
o o OMe
hd R CO.Et R.  CO,Et
o} 2
&CO?FJ CO,Et ;\ ; I\[qu )/:N
10 mol% cat. 2 o~ °Cl 0" Ts
Thierry, B. et al. Tetrahedron: Asymmetry, 2001, 12, 983, Hafez, A. M. et al. J. Am. Chem. Soc.

2001,723, 10853.

Non-ionic catalysts derived from Cinchona alkaloids. (since 1978)
From 42 %ee (1978) t0 87 %ee (2001) in Michael addition.

Relatively small changes in polymer/catalyst ensemble may produce dramatic and
unexplicable effects in stereochemical outcome of the reaction.

Quinine derivatives act as catalyst for [2+2] Staudinger reaction between ketene and

imines.
A properly aged resin was necessary to afford consistent results, by quinine “bleeding”.
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6. Chiral polymer-supported catalysts — from amino acids.

0
() t—Bu S
N’K(CHz)s \[(\N Q

H
Na
2 moi% HO
80 %ee
-Bu
1) HCN F3COC. N

)1 2)TFAA |
Ph”” “CN

JandaJel (more swollen)
| 1

O/\/\/Of,,
Q- .

N~ ~CO,H

15 mol% cat.
44 %, 96 %ee benzoate

45 %, 85 %ee ROH
SH--Ngckon
Ph

trans

PhOCI

» Optimized catalyst by combinatorial approach (12, 48 and 132 elements). 19 %ee to

80 %ee.
* nonsupported counterpart gave 91 %ee.

» Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901.

« JandaJel-supported Proline to catalyze kinetic resolution of cyclic secondary alcohol.
» Clapham, B.; Cho, C.-W; janda, K. D. J. Org. Chem. 2001, 66, 868.
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6. Chiral polymer-supported catalysts — from poly(amino acids).

HH $\H
H(N—C-—C)N—(CHZCHZO)—CHZCHZNH

m

_T/

n

PO Tw
33333

Hoo o
a2 NW-
oNuviwom
r N‘\l-
S5 33
=20
Arllugw
A~ — =
P

In 1980’s, by Julia and colonna, immobilized polyalanin promoted epoxidation of
chalcone. (1%t cycle; 82 %, 84 %ee, 2™ and 3" cycle; 75 and 52 %ee)

By Roberts and co-workers, good recovery and recycling of catalyst was achieved in
the adsorption of poly(aminoacid) on silica gel. (5 times without loss of activity)

Polymer b and c were more efficient than a and d for epoxidation of chalcone.
Polymer b, c and d showed similar ee (up to 98 %ee) and better than a.

Polymer e promoted the epoxidation of chalcone (99 %, 94 %ee) in a continuously
(25 cycles) operated membrane reactor, where catalyst retention was achieved by
means of a nanofiltration membrane. Tsogoeva, S. B. et al. Synlett, 2002, 707.
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Conclusion

« Although the breadth of possible reaction in the field is not as large as that of its
organometallic counterpart, with critical mechanistic insight and novel catalyst
development, it's a growing field that offers an interesting complement to other
catalytic approaches.

« Combinatorial approaches to peptide-based catalysts show the scope for future
development.

* But, more mechanistic study is necessary.
» Loading of catalysts should be lower.

» The new catalysts, which can show high ee with wide range of substrate, need to be
developed.
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