<u>Asymmetric Organocatalyst</u> and Polymer-supported Organocatalyst

In **1971**, Eder, Sauer and Wiechert demonstrated that <u>asymmetry</u> could be induced in a Robinson-type annulation unsing a <u>meso</u>-triketone by <u>simply</u> adding a <u>catalytic</u> amount of <u>D- or L-proline</u>.

Eder, U; Sauer, G.; Wiechert, R. ACIEE. 1971, 10, 496-497.

<u>Cinchoninium-based Catalysts and Asymmetric Phase Transfer</u> <u>Catalysis (PTC)</u>

 In 1984 at Merck, substituted 2-phenyl-1-indanone was enantioselectively alklyalted in the presence of catalytic amounts of substituted N-benzylcinchoninium halides under PTC conditions (50%NaOH/toluene).

Dolling, U. H.; Davis, P.; Grabowski, E. J. JACS, 1984, 106, 446.

Contents and reference.

- 1. introduction
- 2. Examples of asymmetric organocatalysis.
- 3. Polymer-supported organocatalysts.
- Review.
 - 1. Enationselective Organocatalysis; Dalko, P. I.; Moisan, L. *Angew. Chem. Int. Ed. Engl.* **2001**, *40*, 3726.
 - 2. Polymer-Supported Organic Catalysits; Benaglia, M.; Puglisi, A.; Cozzi, F. Chem. Rev. 2003, 103, 3401.
 - 3. Amino acids and peptides as asymmetric organocatalysts; Jarvo, E. R.; Miller, S. J. *Tetrahedron*, **2002**, *58*, 2481.
 - 4. Proline-catalyzed asymmetric reactions; List, B. *Tetrahedron*, **2002**, *58*, 5573.

Asymmetric organometalcatalysis, Enzyme and Organocatalysis.

 Organocatalysis display characteristic and mechanistic similarities to known bioorganic catalysis and are often referred to as enzyme mimics.

- Enzymes are more than highly evolved catalysts, but organic molecules promote the reactions as simple reagents, which possess a wider substrate scope and can be used in a variety of organic solvents.
- Many organocatalysts are ligands in organometal chemistry.
- Complement each other.

What and why organocatalysis?

Asymmetric organocatalysis, in which a chiral organic (metal free) molecules
catalyze an enantioselective transformation, such as phase transfer catalysis, kinetic
resolutions and a variety of asymmetric syntheses in substoichiometric quantity.

- Advantage under metal-free condition; the possibility of
 - i. working in wet solvents and under an aerobic atmosphere.
 - ii. simpler preparation, more stable, less expensive
 - iii. <u>avoid</u> the contamination of the organic product by a (possibly <u>toxic</u>) <u>metal</u> and the toxic <u>waste</u>. (often more environmentally friendly)
 - iv. more readily amenable to anchor on a support for recovery and recycling.
 - v. promising adaptability to high-throughput screening and process chemistry.

What type of Catalyst?

1. derived from Natural products and derivatives; cinchono alkaloid, proline, ephedrine, amino acids... readily available, inexpensive and easily derivatized. already studied as ligand in organometal chemistry. in some cases, enantiomeric counterpart is available.

2. peptide – Dimer, oligomer, polymer
 peptide-like enzyme mimic.
 easy preparation.
 opposite enantiomer or epimer are available.
 combinatorial chemistry.

3. synthetic molecules with N, P, O, S.....;
 phosphoramides, phosphanes, urea, thiourea, N-oxide, sulfoxides, heterocycles.
 both enantiomers are readily available than natural molecules.
 most originate from ligand chemistry.
 diverse functionality.

Kobayashi, S. et al. J. Am. Chem. Soc. 2003, 125, 6610.

- Chiral Lewis bases such as phosphoramide, formamide, urea, oxazolidine, and amine N-oxide, have been used in enantioselective allylation.
- Formation of a tightly bound chiral complex between catalyst and silicon compound. In TS, octahedral hexacoordinated silicon center was formed.
- Tethered bis-phosphoramide results in better ee than monomer.
- The best ee (92 %ee, 10 mol% cat) with bisquinoline N,N'-dioxide.
- Mono oxide gave the opposite enatiomer of product.
- Still 3 eq. chiral sulfoxide was used with *N*-acylhydrazone..

Aldol reactions and Mannich reactions.

List, B. et al. J. Am. Chem. Soc. 2000, 122, 7386.

List, B. et al. J. Am. Chem. Soc. 2002, 124, 827.

- [Aldol] Aromatic aldehydes give moderate yield (60 70 %) and ee (~ 70 %ee).
- \square α -unbranched, enolizable aldehydes suffer lower yield due to selfaldolization.
- In R = OH, anti 1,2-diol like dihydroxylation.
- · absence of non linear effect.
- [mannich] One pot Mannich reaction

dr >20:1, 23 %ee

- Proline-catalysis proceed by both aminocatalysis pathways, iminium (a) and enamine catalysis (b).
- Urea and thiourea derivatives act as acid catalysts.
- activated by acidic hydrogen of thiourea.
- For a high yield and selectivity, catalyst should possess both thiourea and t-amino group within molecule.

Okino, T. et al. J. Am. Chem. Soc. 2003, 125, 12672.

CHCl₃, rt

Cycloaddition reactions.

MacMillan, D. W. C. et al. J. Am. Chem. Soc. 2000, 122, 4243.

- By lowering LUMO of dienophile.
- the characteristics of Lewis acid catalysis.
- The presence of water results in increased rate and enantioselectivity, which indicates that the iminium ion is hydrolyzed in the catalytic cycle.
- [4+3] 2,5-disubstituted furans gave good yield and ee.

Cycloaddition reactions.

Zhu, G. et al. J. Am. Chem. Soc. 1997, 119, 3836.

- Activated alkenes undergo a formal asymmetric [3+2] cycloaddition in the presence of allenic esters and a catalytic chiral phosphine.
- Phosphine act as a nucleophile trigger.

Hydrocyanation reactions.

- In 1981, Inoue reported the enantioselective hydrocyanation by diketopiperazine, cyclo(L-phenylalanine-Lhistidine).
- broad substrate scope (electro rich aromatic aldehyde is best) and low loading.
- High-throughput screening of resinsupported oligopeptide-like catalyst.

- the replacement of imidazole with a more basic guanidine side chain provide better ee.
- the synthesis of unnatural α -amino acids.
- by formation of a guanidium cyanide complex, which activates the aldimine substrate by H-bonding.

Inoue, S. et al. Chem. Commun. 1981, 229.

Corey, E. J. et al. Org. Lett. 1999, 1, 157.

Baylis-Hillman reaction.

Iwabuchi, Y. et al. J. Am. Chem. Soc. 1999, 121, 10219.

- hydroxylated chiral amine.
- by formation of betaine intermediate, which is stabilized by intramolecular H-bonding between oxy anion and phenolic hydroxy group.
- without phenolic OH, very low ee (10 %ee).
- Phosphorous-based chiral molecule work efficiently.

Acyl transfer reaction-Kinetic resolution.

OH

2.5 mol% cat.

$$Ac_2O$$
, toluene
 $-65^{\circ}C$
 $k_{rel} > 50$

Ph

 t -BuO

NHPr

NHPr

NHPr

NHPr

NHPr

NHPr

NHPr

NHPr

NHPr

- Linear peptides were considered unsuitable for catalysis due to flexibility and variable conformation.
- But by the well defined secondary structure of linear peptides (β-turn conforamation, decreasing catalyst flexibility), they show proper property as catalysts.
- substrate; participate in H-bonds with catalyst.
- This oligopeptide was discovered by screening a split-pool library of polypeptides for acylation of sec-phenyethanol.
- In this group, tripeptide containing histidine showed asymmetry addition of azides to α,β -unsaturated corbonyl compound. (high yield, up to 92 %ee)

Oxidation.

Julia, S. et al. Angew. Chem. Int. Ed. Engl. 1980, 19, 929.

- triphasic mixture.
- In MeOH, selectivity and yield drop, due to interruption of H-bonding.
 α-helical peptide more successful (poly-L
 - α-helical peptide more successful (poly-L-leucine).
 - about 30 amino acids show the most enentioselectivity.
- using urea-H₂O₂ and DBU, now two-phase and no more excess oxidant.
- as low as 2.5 mol% cat.

- chiral ketones form dioxiranes in situ with oxidents to give epoxide; up to 87 %ee.
- molecular oxygen as co-oxidant; N-oxyl radical by one-electron oxidation; oxidation at benzylic positions (8%ee)

PTC

- In 1990's. Corey demonstrated the utility of modified catalyst in alkyation, Michael addition, aldol, nitroaldol and epoxidation; in cinchona-catalysts, the substitution pattern (like bulker group on quaternary ammonium) plays a crucial role (high ee).
- mechanism: a unique ion-pair-mediated reaction by chiral quaternary ammonium salts, based on X-ray structure. and van der Waals interaction between aromatic rings.
- · Non polar solvents gave higher ee.
- Oligopeptides are also used.

Chiral-cavity-accelerated asymmetric transformation

Takahashi, K. Chem. Rev. 1998, 98, 2013.

- [3,3]-Sigmatropic rearrangement of allylic xanthane in β-CD complex.
- 80 % yield, up to 46 %ee.
- The selective recognition of substrates followed by chemical transformation with the help of a molecular cavity based on chiral host-guest chemistry.
- Cyclodextrins form complex with hydrophobic guest based on size, structure and polarity.
- The formed host-guest complex is often too stable to allow catalytic turnover.
- Imprinted Polymers with memory for small molecules, proteins or crystals.
 Sellergren, B. Angew. Chem. Int. Ed. Engl. 2000, 39, 1031.

Polymer-supported Organic catalysts

Benaglia, M.; Puglisi, A.; Cozzi, F. Chem. Rev. 2003, 103, 3401.

stirring rate - microwave solvent effect Temperature

Recovery and Recycling without the loss of reactivity of catalysts.

1. Phase-Transfer Catalysts anchored to insoluble supports.

- Triphase catalysis
- Polystyrene or polyacryamide-supported catalysts; easy recovery.
- Diffusion of reagent and substrate in and out of polymer matrix.
- Generally, reaction rates were faster with the higher stirring, relatively low crosslinking and good swelling.
- The catalytic activity of polymer-supported catalyst was usually lower than nonsuppored catalyst; the insertion of spacer can enhance the activity.

$$O \xrightarrow{\text{(CH}_2)_{10}} X^+ B u_3 B r$$

$$X = N, P$$

$$(H_2C)_9$$

$$n$$
- $C_8H_{17}Br$
 n - $C_8H_{17}CN$
 Cl
 Cl
 Cl
 R -Hal
 R -X- R'
 R = O_1 S
 R -Hal
 R -Coh
 R -OH
 R -OH

2. Catalysts anchored to soluble supports.

- More homogeneous condition.
- no more diffusion.
- now the issue is recovery and recycling and loading.
- Polyethylene-supported catalysts.
- i) temperature-dependent solubility. Bergbreiter, D. E. Chem. Rev. 2002, 102, 3345.
- ii) the intrinsic thermal instability like phosphonium salts.

- Poly(ethylene glycol)-supported catalysts.
- i) inexpensive, easily functionalized
- ii) solubility as phase separation device; simply by decreasing the solvent polarity, to precipitate, recover and recycle.
- iii) high Mw of PEG is essential for efficient recovery and recycling. But 55 g catalyst is required for 1 mol of substrate. (1 mol% cat. with Mw of 5500 Da)
- iv) for high loading; dendrimeric catalyst.

3. Polymer-supported Oxidation catalysts

- 1) In 1979, PS-arsonic acid was used in Bayer-Villiger oxidation of ketones and epoxidation of alkenes. (3 mol% cat.)
- three times slower than unsupported arsonic acid.
- · readily recoverable and recyclable.
- 2) Silica-supported polymer gave a good property.
 high yield, readily recovered, 9 times recycled
 non-supported fluoro ketone is rapidly degraded under reaction condition.
- 3) Silica supported TEMPO was recycled 45 times.
- 0.6 mol% cat. yields 99% yield for 1h in oxidation of primary and secodary alcohol.

4. Acidic catalysts.

- In protection and deprotection reactions, pyridinium salts, poly(Nisopropylacrylamide)(PNIPAM), dicyanoketene acetals, phosphonium salts polymer
 are reported.
- PNIPAM as a 'smart polymer', which is soluble in cold water and insoluble in the same solvent when heated above its lower critical solution temperature.

4. Acidic catalysts.

- In C-C bond-forming reactions, trityl perchlorate, dicyanoketene acetals and tetrafluoropnenylbis(trifluoromethanesulfonyl)methane polymers were reported.
- 0.1 mol% 1 mol% catalyst promoted acetylation of menthol with acetic anhydride (1h, rt, 100 %).
- 10 cycles without loss of activity.

5. Basic catalysts.

- Since 1979, DMAP-like molecules supported on polymer have been reported.
- with 5 mol% cat., acetylation was catalyzed efficiently and with 0.25 mol%, the reaction between phenols and di-t-butoxycarbonate was catalyzed.
- Catalyst, soluble in polar solvent and water, was recovered by precipitation with hexanes and the residue of cat. was determined by UV-vis spectroscopy, which showed less than 0.1 % of cat. was remained. Berbreiter, D. E.; Osburn, P. L. Org. Lett. 2002, 4, 737.

6. Chiral polymer-supported catalysts.

- chiral Phase-Transfer catalysts.
- different sites for polymer attachment.
- The use of spacer improved ee of (R)-product slightly.
- Catalyst recovery and recycling were reported.
- Soluble catalyst gave lower ee.
- Just the presence of Me-PEG depressed to 66 %ee with nonsupported catalyst.

6. Chiral polymer-supported catalysts.

Thierry, B. et al. Tetrahedron: Asymmetry, 2001, 12, 983.

Hafez, A. M. et al. J. Am. Chem. Soc. **2001**,*123*, 10853.

- Non-ionic catalysts derived from Cinchona alkaloids. (since 1978)
- From 42 %ee (1978) to 87 %ee (2001) in Michael addition.
- Relatively small changes in polymer/catalyst ensemble may produce dramatic and unexplicable effects in stereochemical outcome of the reaction.
- Quinine derivatives act as catalyst for [2+2] Staudinger reaction between ketene and imines.
- A properly aged resin was necessary to afford consistent results, by quinine "bleeding".

6. Chiral polymer-supported catalysts – from amino acids.

- Optimized catalyst by combinatorial approach (12, 48 and 132 elements). 19 %ee to 80 %ee.
- nonsupported counterpart gave 91 %ee.
- Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901.
- JandaJel-supported Proline to catalyze kinetic resolution of cyclic secondary alcohol.
- Clapham, B.; Cho, C.-W.; janda, K. D. J. Org. Chem. 2001, 66, 868.

6. Chiral polymer-supported catalysts – from poly(amino acids).

- In 1980's, by Julia and colonna, immobilized polyalanin promoted epoxidation of chalcone. (1st cycle; 82 %, 84 %ee, 2nd and 3rd cycle; 75 and 52 %ee)
- By Roberts and co-workers, good recovery and recycling of catalyst was achieved in the adsorption of poly(aminoacid) on silica gel. (5 times without loss of activity)
- Polymer b and c were more efficient than a and d for epoxidation of chalcone.
- Polymer b, c and d showed similar ee (up to 98 %ee) and better than a.
- Polymer e promoted the epoxidation of chalcone (99 %, 94 %ee) in a continuously (25 cycles) operated membrane reactor, where catalyst retention was achieved by means of a nanofiltration membrane. Tsogoeva, S. B. et al. *Synlett*, **2002**, 707.

Conclusion

- Although the breadth of possible reaction in the field is not as large as that of its
 organometallic counterpart, with critical mechanistic insight and novel catalyst
 development, it's a growing field that offers an interesting complement to other
 catalytic approaches.
- Combinatorial approaches to peptide-based catalysts show the scope for future development.
- But, more mechanistic study is necessary.
- Loading of catalysts should be lower.
- The new catalysts, which can show high ee with wide range of substrate, need to be developed.