Targeting Protein-Protein Interactions – the Pursuit of Asymmetric Direct Functionalization of Saturated N-Heterocycles for Efficient Development of Topologically Complex Chemical Fragments for Fragment-Based Drug Discovery

Evan Carder Wipf Group Frontiers Seminar September 30, 2017

Part I. Current Reality of Drug Discovery

Nat. Rev. Drug Disc. **2015**, 14, 475. *Nat. Rev. Drug Disc.* **2016**, 15, 817. *Nat. Rev. Drug Disc.* **2016**, 15, 447.

Lack of Clinical Efficacy – Poor Target Identification and Validation

Brit. J. Pharm. **2011**, 162, 1239. *Nat. Rev. Drug Disc.* **2013**, 12, 581. *Nat. Rev. Cancer* **2017**, 17, 441.

Tractable Disease Targets

I. <u>Clinically Validated</u>

Enzymes Oxidoreductases Transferases Proteases Hydrolases Isomerases Ligases

Ion-Channels

Ca²⁺ channels K⁺ channels Na⁺ channels Cl⁻ channels

Receptors

GPCR Cytokine receptor Integrin receptor Nuclear receptor

Nucleic Acids and Ribosomes

DNA RNA Spindle Ribosomes

Tractable Disease Targets

II. Druggability

- James Black

New Drug Target Category

- There is an estimated 130,000 650,000 types of protein-protein interactions (PPI) in the human interactome.
- The interactome is very complex and diverse and their extensive network regulate most biochemcal pathways involved in cell signaling, growth, and survival.
- Protein-protein interactions are now recognized as potential therapeutic targets
- Identifying therapeutically relevant PPIs is considerably difficult.

The Interactome - the extensive network of Protein-Protein Interactions

Characteristics of Protein-Protein Interactions

- PPI display fewer well-defined concave binding sites than classical enzymes and receptors.
- Protein-protein interfaces tend to be flat with large surface area (1,500 – 3,000 Å²) and dominated by hydrophobic and complementary charge interactions.
- Not all residues at the protein-protein interface contribute equally toward binding. Only a small subset of contact residues contribute toward the binding free energy.
- "Hot spot" residues or regions are significantly responsible for the majority of the PPI binding free energy

Side-view

Protein Interface

Nat. Rev. Drug. Disc. **2004**, 3, 301. Annu. Rev. Pharmacol, Toxicol. **2014**, 54, 435. Chem. Biol. **2014**, 9, 1102. Bioorg. Med. Lett. **2014**, 24, 2546. Chem. Soc. Rev. **2015**, 44, 8238. Nat. Rev. Drug Disc. **2016**, 15, 533.

Strategies towards Modulating a Protein-Protein Interaction

Hot spot identification

- 1. Alanine scanning mutagenesis
- 2. Nuclear magnetic resonance
- 3. X-ray crystallography

Disrupting hot spot residues

- 1. Orthosteric inhibition
- 2. Allosteric regulation
- 3. Interfacial binding/stabilization

Druggability: Challenges Developing PPI Inhibitor

<u>Classical Drug Targe</u>t

- Natural small molecule partners
- Well-defined binding sites
- Concavity
- Hydrogen-bond donors and acceptors

Protein-Protein Interaction

- No natural small molecule partners
- Fewer well-defined binding sites
- Flat and featureless surface
- Lack of hydrogen-bond donors and acceptors
- Conformational plasticity

Identification of PPI Inhibitors

Part II. Fragment-Based Drug Discovery (FBDD)

Advantages of FBDD:

- Begin with low molecular weight subunits
- Greater diversity and complexity
- Access to more chemical space

- Better physiochemical properties
- High-quality intermolecular interactions
- Opportunity for novel intellectual property

Nat. Rev. Drug Disc. **2007**, 6, 211. Trends Pharm. Sci. **2012**, 33. 5. Drug Disc. Today **2005**, 10, 987 J. Med. Chem. **2017**, 60, 89. *Nat. Chem.* **2009**, 1, 187.

Fragment-Based Lead Development

Nat. Rev. Drug Disc. **2007**, 6, 211. *Drug Disc. Today* **2005**, 10, 987. *Nat. Chem.* **2009**, 1, 187.

Greater Survey of Chemical Space

Growth vectors – possible sites to incorporate functionality or substituents

Importance:

- Structural and stereochemical diversity
- Enhanced complexity
- High-quality intermolecular interactions

Protein Interface:

- Fewer well-defined binding sites
- Flat and featureless surface
- Lack of hydrogen-bond donors and acceptors
- Conformational plasticity

Success Story - Development of Navotoclax (ABT-263)

• B cell lymphoma 2 (BCL-2)

Regulate the intrinsic apoptotic pathway

Inhibit essential pro-apoptotic effectors BAK and BAX by binding to their BH3 domain and preventing oligomerization.

Upregulated in cancer

Associated with chemoresistance and cancer cell survival

Targeting the anti-apoptotic BCL-2 protein is an attractive therapeutic strategy in cancer.

BCL-2 and BAX Protein-Protein Interaction

Medicinal Chemistry Efforts of Navotoclax (ABT-263)

Success Story – Development of Navotoclax (ABT-263)

Challenges to FBDD – Escape from the Flatland

Fragments libraries

- Commercially available
- Substantial *sp*²-rich compounds
- Flat molecules lacking dimensionality
- Improve physiochemical properties to conserve drug-likeness

Angew. Chem. Int. Ed. **2016**, 55, 488. Nat. Chem. **2013**, 5, 21. Med. Chem. Commun. **2013**, 4, 515. PNAS **2011**, 108, 6799. J. Med. Chem. **2009**, 52, 6752.

Improve 3-Dimensionality

- Incorporate structural and stereochemical diversity
- Emulate natural product structural motifs
- •*Sp*³ carbons can increase the number and scope of vectors for fragment growth.
- "Chiral *sp*³-rich heterocycles are greatly underrepresented"

Challenges to FBDD – Efficient Synthetic Methodology

Structure-guided medicinal chemistry

X-ray informed fragment-design requires tailor synthetic transformations to the central core of the fragment

"Precision Synthesis"

Synthetic vectors

Methodology that allows synthetically accessible vectors to incorporate substituents

Molecular recognition

Methodology that enables incorporation of heteroatoms and tolerates polar H-bonding functionality. Shape Control of stereo- and regio-chemistry.

Svnthetic tractability

Efficient synthesis (few steps) using commercially available reagents.

Part III. Asymmetric Direct-Functionalization of Saturated N-Heterocycles

Saturated N-Heterocycles:

Biologically relevant

Natural products Pharmaceuticals Agriculture

 Biological handle – hydrogen bonding capabilities

 Significant opportunity for growth vectors to enhance intermolecular interactions

Synthetically undeveloped

pyrrolidine

piperidine

azepane azocane

azonane

morpholine thiomorpholine

1,4-piperazine 1,4-oxazepane 1,4-diazepane

Synthesis of Saturated N-Heterocycles

Direct Functionalization

Not all C-H bonds are equal

Electronics

Steric

Stereoelectronics

Directed-proximal effects – for site selectivity

Saturated N-Heterocycles

Alpha-Lithiation

Cationic

Radical

Transition-metal

Alpha-Lithiation

Substrate	Major product	Е	% Yield
Me (), N Boc	Me Ne N ^t -Bu Boc	SnBu ₃	83%
Me	Me N E Boc	Me TMS CHO	41% 67% 63%

Asymmetric Alpha-Lithiation

$$(\underbrace{N}_{\text{Boc}} \xrightarrow{s-\text{BuLi, (+)-L}}_{-78 \text{ °C, 6 h}} (\underbrace{N}_{\text{Boc}} \xrightarrow{\text{Li L}}_{-78 \text{ °C - rt}} \underbrace{E^+}_{\text{Boc}} (\underbrace{N}_{\text{Boc}} \xrightarrow{E^+}_{-78 \text{ °C - rt}} \xrightarrow{E^+}_{-78 \text{ °C - rt}} (\underbrace{N}_{\text{Boc}} \xrightarrow{E^+}_{-78 \text{ °C - rt}} \xrightarrow{E^+}_{-78 \text{ °C - rt}} (\underbrace{N}_{\text{Boc}} \xrightarrow{E^+}_{-78 \text{ °C - rt}} \xrightarrow{E^+}_{-78 \text{ °C - rt}} (\underbrace{N}_{\text{Boc}} \xrightarrow{E^+}_{-78 \text{ °C - rt}} \xrightarrow{E^+}_{-78 \text{ °C - rt}} (\underbrace{N}_{\text{Boc}} \xrightarrow{E^+}_{-78 \text{ °C - rt}} \xrightarrow{E^+}_{-78 \text{ °C - rt}} (\underbrace{N}_{\text{Boc}} \xrightarrow{E^+}_{-78 \text{ °C - rt}} \xrightarrow{E^+}_{-78 \text{ °C - rt}} \xrightarrow{E^+}_{-78 \text{ °C - rt}} (\underbrace{N}_{\text{Boc}} \xrightarrow{E^+}_{-78 \text{ °C - rt}} (\underbrace{N}_{-78 \text{ °C - rt}} \xrightarrow{E^+}_{-78 \text{ °C - rt}} \xrightarrow{E^+}_{-78$$

	Е	% Yield, (<i>er</i>)
Me. N H (+)-L	(<i>R</i>)-TMS (<i>R</i>)-Bu ₃ Sn (<i>S</i>)-CO ₂ (<i>S</i>)-MeO ₂ C (<i>R</i>)-PhMe ₂ Si (<i>R</i>)-Me	73%, (86:14) 82%, (88:12) 92%, (88:12) 78%, (88:12) 85%, (73:27) 45%, (64:36)

J. Am. Chem. Soc. 1994, 3231.

Acc. Chem. Res. **1996**, 522. *Tetrahedron: Asymmetry* **2005**, 661. *J. Am. Chem. Soc.* **2010**, 132, 7260.

E*Product% Yield (er)E*Product% Yield (er)
$$1 \swarrow Ph$$
 \bigwedge_{Boc} R R

J. Org. Chem. **2004**, 69, 3076.

C-2 Direct Alkylation

Substrate scope

J. Am. Chem. Soc. 2001, 123, 44.

Angew. Chem. Int. Ed. 2017, 56, 10530.

Directing Group Free Direct Alkylation

Org. Lett. 2013, 15, 2182.

C-2 Direct Arylation

J. Am. Chem. Soc. 2006, 128, 14220.

Chem. Eur. J. **2010**, 16, 13063.. *Chem. Eur. J.* **2013**, 19, 10378.

J. Am. Chem. Soc. 2015, 137, 11876.

Enantioselective C-2 Direct Arylation

Nat. Chem. 2017, 9, 140.

(*R*)-**PA**

OH

Ο. ,0²P,0

R

Regio- and Stereospecific C-3 Functionalization

Org. Lett. **2014**, 16, 4956. *Eur. J. Org. Chem.* **2016**, 139.

Regio- and Stereospecific C-5 Functionalization of 3-Aminopiperidine

ACS Catal. 2016, 6, 4486.

Regiospecific C-4 Direct Functionalization of Piperidine

Alpha-lithiation

Future Efforts

I. Drug Development

- Lack of drug efficacy is a significant barrier towards advancing modern medicine.
- Protein-protein interactions offer a new category of possible drug targets; however, identifying therapeutically relevant PPIs is considerably difficult.
- Modulating a protein-protein interaction with a small molecule is feasible; however, the identification and development of such a molecule is rather difficult and requires the advancement in modern drug development.

- II. Fragment-Based Drug Development
- Improve 3-Dimensionality
- Incorporate structural and stereochemical diversity
- Emulate natural product structural motifs

III. Asymmetric Direct Functionalization

- Enhance stereo- and regioselective control
- Expand scope and substitutional diversity
 - Scope: 2-atom heterocycles
 - Subsitutions: heteroatoms
- Efficient and robust

Thank you

Dr. Peter Wipf and Wipf group members

